Atjaunināt sīkdatņu piekrišanu

E-grāmata: Laser Remote Sensing

Edited by , Edited by
  • Formāts: 912 pages
  • Izdošanas datums: 28-Jun-2005
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781420030754
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 77,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 912 pages
  • Izdošanas datums: 28-Jun-2005
  • Izdevniecība: CRC Press Inc
  • Valoda: eng
  • ISBN-13: 9781420030754
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Written for atmospheric scientists familiar with laser remote sensor (Lidar) theory and operation, this dense volume presents the new femtosecond white light lidar, elastic lidar measurement of the troposphere, and differential absorption lidar methods for monitoring trace gases in the planetary boundary layer. The longest chapter describes the measurement of temperature and constituent structures in the middle and upper atmosphere by resonance fluorescence lidar. Other topics of the nine papers include fluorescence spectroscopy and imaging of lidar targets, wind lidar, airborne lidar systems, and space-based lidar. Annotation ©2005 Book News, Inc., Portland, OR (booknews.com)

Information on recent progress in laser remote sensor (LIDAR) technology can be found scattered throughout numerous journal articles and conference proceedings, but until now there has been no work that summarizes recent advancements and achievements in the field in a detailed format.

Laser Remote Sensing provides an up-to-date, comprehensive review on LIDAR, focusing mainly on applications to current topics in atmospheric science. The scope of the book includes laser remote sensing of the atmosphere, including measurement of aerosols, water vapor, clouds, winds, trace constituents, and temperature. It also covers other interesting applications such as vegetation monitoring and altimetry. LIDAR systems described in this volume include ground-based (fixed or mobile), airborne, and spaceborne (satellite-based) systems. The book emphasizes instrumentation and measurement techniques to enable the reader to understand what kind of a LIDAR system is necessary for a certain application.

The individual chapters are self-contained and written by authors who are outstanding experts in each field. The book is intended for scientists, researchers, and students who have interest in the atmospheric environment and wish to learn about the measurement capabilities of state-of-the-art LIDAR systems
Lidar: Introduction
1(36)
Claus Weitkamp
Introduction
2(15)
From Visual Perception to Lidar
2(1)
What This Book Does Not Consider
3(2)
How It All Began
5(1)
Lidar Literature and Information Dissemination
6(1)
What a Lidar Is
7(1)
The Lidar Return Signal and Lidar Equation
8(4)
Atmospheric Parameters that Can be Measured
12(1)
Interaction Processes Used
13(3)
Lidar Systematics
16(1)
Lidars Considered in This Book
17(13)
Femtosecond White-Light Lidar
19(2)
Elastic Lidar Measurement of the Troposphere
21(1)
Trace Gas Species Detection in the Lower Atmosphere by Lidar
22(1)
Resonance Fluorescence Lidar for Measurements of the Middle and Upper Atmosphere
23(1)
Fluorescence Spectroscopy and Imaging of Lidar Targets
24(2)
Wind Lidar
26(2)
Airborne Lidar Systems
28(1)
Space-Based Lidar
29(1)
Lidar Guidelines
30(7)
References
32(5)
Femtosecond White-Light Lidar
37(26)
J. Kasparian
R. Bourayou
S. Frey
J. C. Luderer
G. Mejean
M. Rodriguez
E. Salmon
H. Wille
J. Yu
J.-P. Wolf
L. Woste
Introduction
38(2)
The Teramobile System
40(2)
Nonlinear Propagation of TW Pulses
42(7)
Kerr Self-Focusing
43(2)
Multiphoton Ionization and Plasma Generation
45(1)
Filamentation of High-Power Laser Beams
46(2)
White-Light Generation and Self-Phase Modulation
48(1)
Atmospheric Filamentation Experiments
49(2)
Lidar Remote Sensing of Atmospheric Traces
51(3)
Aerosols
54(4)
Conclusion
58(5)
Acknowledgments
59(1)
References
59(4)
Elastic Lidar Measurement of the Troposphere
63(60)
Nobuo Takeuchi
Outline of the Troposphere by Lidar Monitoring
65(2)
Lidar Equation and Analytical Solution
67(5)
One-Component Case---Klett Method
67(4)
Two-Component Case---Fernald Methods
71(1)
Lidar System and Example of Monitoring
72(20)
Characteristics of Performance
73(1)
Single-Channel Lidar with Scanning Mechanism
73(1)
Multiwavelength Lidar
74(3)
Polarization Diversity Lidar
77(1)
Monitoring of Mineral Dust
78(3)
Cloud Measurement
81(2)
Unattended Lidar
83(1)
Micro-Pulse Lidar
83(4)
Other Systems
87(2)
Combination with Radar --- Cloud Measurement
89(3)
Monitoring of Aerosol Optical Properties
92(21)
Model of Aerosol Size Distribution
92(1)
Log Normal Distribution
92(1)
The Power Law Distribution
93(1)
Modified Gamma Distribution
94(1)
Optical Properties of Aerosol and Air Molecule
95(2)
Monitoring by High-Spectral-Resolution Lidar
97(3)
Derivation Using a Raman-Mie Lidar
100(2)
Monitoring by Multiwavelength Lidar
102(1)
Two-Wavelength Lidar Method
102(4)
Four-Wavelength Lidar Method
106(7)
Lidar Network Monitoring
113(4)
Earlinet
113(2)
MPL-Net
115(1)
AD-Net
116(1)
Conclusions and Future Trend
117(6)
References
118(5)
Trace Gas Species Detection in the Lower Atmosphere by Lidar: From Remote Sensing of Atmospheric Pollutants to Possible Air Pollution Abatement Strategies
123(56)
Bertrand Calpini
Valentin Simeonov
Introduction
124(1)
Differential Absorption Lidar Equation
125(2)
The Detection of Trace Gas Species by Dial
127(5)
Dial Measurements in the UV (200 to 450 nm)
132(5)
Nitrogen Oxides
132(2)
Sulfur Dioxide, SO2
134(1)
Chlorine, Cl2
135(1)
Aromatic Hydrocarbons
136(1)
Mercury, Hg
136(1)
Dial Measurements in the Near-IR (1 to 5 μm)
137(1)
Volatile Organic Compounds (VOCs)
137(1)
Hydrogen Chloride, HCI
138(1)
Dial Measurements in the Mid-IR (5 to 11 μm)
138(2)
Sulfur Hexafluoride, SF6
139(1)
VOCs
139(1)
Ammonia, NH3
140(1)
Tropospheric Ozone as a Special Case Study
140(15)
Comparison Between Lidar Measurements and Model Predictions
155(11)
Grenoble 1999
157(4)
Pump and Probe OH
161(5)
Perspectives
166(13)
Acknowledgments
167(1)
References
168(11)
Resonance Fluorescence Lidar for Measurements of the Middle and Upper Atmosphere
179(254)
Xinzhao Chu
George C. Papen
Introduction
182(8)
Lidar Study of the Middle and Upper Atmosphere
182(1)
Lidar Concepts and Classifications
183(2)
Initial Developments of Resonance Fluorescence Lidar
185(2)
New Developments of Resonance Fluorescence Lidar
187(3)
Arrangement of this
Chapter
190(1)
Advanced Technology of Resonance Fluorescence Lidar
190(131)
Lidar Equations for Resonance Fluorescence Lidar
191(1)
General Form of the Lidar Equation
191(3)
Scattering Form of the Lidar Equation
194(2)
Fluorescence Form of the Lidar Equation
196(10)
Solutions for the Resonance Fluorescence Lidar Equation
206(2)
Na Wind/Temperature Lidar
208(1)
Introduction
208(2)
Measurement Principle (Doppler Technique)
210(18)
Na Doppler Lidar Instrumentation
228(19)
Daytime Measurements
247(8)
Lidar Data and Error Analysis
255(13)
Fe Boltzmann Temperature Lidar
268(1)
Introduction
268(1)
Measurement Principle (Boltzmann Technique)
269(7)
Fe Boltzmann Lidar Instrumentation
276(4)
Temperature and Error Analysis
280(7)
Rayleigh Temperature Retrieval
287(3)
Temperature Measurement over the North and South Poles
290(3)
Polar Mesospheric Cloud Detection over Both Poles
293(3)
Potassium Doppler Lidar
296(1)
Introduction
296(1)
Measurement Principle
297(4)
K Doppler Lidar Instrumentation
301(2)
Daytime Measurements
303(4)
Temperature and Error Analysis
307(4)
Solid-State Na Doppler Lidar
311(1)
Introduction
311(1)
All-Solid-State Na Temperature Lidar
311(5)
Solid-State Na Wind/Temperature Lidar
316(1)
Comparison of Na, Fe, K, and Rayleigh Lidar Techniques
317(1)
Narrowband Na Doppler Lidar Technique
318(1)
Fe Boltzmann Temperature Lidar Technique
319(1)
Narrowband K Doppler Lidar Technique
320(1)
The Rayleigh Lidar Technique
321(1)
Key Results of Lidar Measurements in the Middle and Upper Atmosphere
321(85)
Thermal Structure of the Middle and Upper Atmosphere
322(1)
Thermal Structure at Polar Latitudes
323(11)
Thermal Structure at Mid-Latitudes
334(10)
Thermal Structure at Low Latitudes
344(6)
Dynamics of the Middle and Upper Atmosphere
350(1)
Heat, Momentum, and Na Flux
350(8)
Atmospheric Instability and Gravity Wave Directions
358(3)
Tidal Study by Full-Diurnal-Cycle Lidar
361(3)
Atmospheric Metallic Layers and Meteor Detection
364(1)
Metal Layers and Mesospheric Chemistry
364(16)
Meteor Trail Detection by Lidar
380(6)
Polar Mesospheric Clouds (Noctilucent Clouds)
386(1)
Historical Perspective
386(3)
PMC Characteristics Measured by Lidar
389(17)
Conclusions and Future Outlook
406(27)
Acknowledgments
412(1)
References
412(21)
Fluorescence Spectroscopy and Imaging of Lidar Targets
433(36)
Sune Svanberg
Introduction
434(2)
Fluorescence
436(4)
Remote Fluorescence Recording
440(7)
General Considerations
440(3)
Instrumentation
443(1)
Transmitters
443(2)
Optics
445(1)
Detectors
446(1)
Strategies for Fluorescence Imaging
446(1)
Illustrations of Fluorescence Lidar Applications
447(14)
Marine Monitoring
447(3)
Vegetation Monitoring
450(6)
Historical Monuments
456(5)
Discussion
461(8)
Acknowledgments
461(1)
References
462(7)
Wind Lidar
469(254)
Sammy W. Henderson
Philip Gatt
David Rees
R. Milton Huffaker
Introduction
472(2)
Background
474(8)
Coherent Lidar Systems
475(4)
Direct Detection Wind Lidar Systems
479(3)
Doppler Wind Lidar Principle of Operation
482(26)
Concept Overview
483(2)
Lidar Equation
485(2)
Quantum-Limited Optical Detection
487(2)
Backscatter Coefficient
489(3)
Atmospheric Extinction
492(1)
Radial Velocity Precision
492(4)
Vector Wind Velocity Estimation
496(1)
Laser Speckle Effects
497(6)
Background Light
503(2)
Direct Detection
505(2)
Coherent Detection
507(1)
Doppler Wind Lidar Theory of Operation
508(102)
Coherent Detection Doppler Wind Lidar Theory
509(1)
Heterodyne Detection Concept Overview
509(1)
Heterodyne Detection CNR and Related Concepts
510(13)
Target-Plane Formalism---General CNR and Antenna Efficiency
523(9)
Antenna Efficiency Calculations
532(13)
Alignment Errors
545(1)
Refractive Turbulence Effects
546(4)
Pulsed Coherent Lidar Velocity Estimation Accuracy
550(14)
Example System Performance Estimation
564(3)
Coherent Detection Doppler Wind Lidar Theory Summary
567(3)
Direct Detection Doppler Wind Lidar Theory
570(2)
Direct Detection Concept Overview
572(2)
Direct Detection SNR
574(3)
The Fabry--Perot Etalon
577(2)
Velocity Measurement Accuracy
579(17)
Detector Truncation or Overlap and Alignment Efficiency
596(1)
Refractive Turbulence Effects
597(1)
Direct Detection Wind Lidar Theory Summary
598(2)
Comparison of Coherent and Direct Detection Receivers
600(3)
Coherent Detection Receiver
603(2)
Direct Detection Receiver
605(3)
Example Transmitter Requirement Comparison
608(2)
System Architectures and Example Systems
610(51)
Coherent Detection Lidar Systems
610(1)
Coherent Lidar System Architecture
610(7)
Representative CO2 Coherent Lidar Systems
617(8)
Representative Solid-State Coherent Lidar Systems
625(6)
Direct Detection Lidar
631(1)
Direct Detection Lidar Architecture
632(5)
Direct Detection Lidar Receiver Details
637(9)
Detectors and Detection Efficiency for Direct Detection Doppler Lidar
646(10)
A Representative Double-Edge Wind Lidar System
656(3)
A Representative Fringe-Imaging Doppler Wind Lidar System
659(2)
Wind Measurement Applications
661(29)
Wind Shear, Gust Front, and Turbulence Measurements
662(1)
NOAA's 10.6 μm Coherent Lidar
662(2)
Ecole Polytechnique 10.6 μm Transportable Wind Lidar
664(1)
NOAA's 2.0 μm Coherent High-Resolution Doppler Lidar
664(3)
Coherent Technologies' WindTracer
667(1)
Ground Wind Profiling
668(2)
Coherent Technologies' Flashlamp-Pumped 2.0 μm Coherent Lidar
670(1)
ALOMAR DWTS 532 nm ``Fringe-Imaging'' Direct Detection Lidar
671(1)
Goddard's ``Double-Edge'' Direct Detection Lidar
671(2)
Michigan Aerospace's GroundWinds 532 nm ``Fringe-Imaging'' Direct Detection Lidar
673(1)
Airborne Wind Profiling
673(1)
DLR's 10.6 μm CW WIND Coherent Lidar
673(2)
Coherent Technologies' 2 μm Coherent Lidar
675(3)
Airborne Clear Air Turbulence Detection
678(1)
QinetiQ's (formely DRA) LATAS 10.6 μm CW Coherent Lidar
678(2)
Coherent Technologies' ACLAIM 2.012 μm Coherent Lidar
680(1)
Aircraft Wake Vortex Detection and Tracking
680(2)
QinetiQ's (formerly DRA) 10.6 μm CW Coherent Lidar
682(2)
Coherent Technologies' 2.0 μm Coherent Lidar
684(1)
DLR 2.0 μm Lidar
684(4)
Aerosol Detection and Tracking
688(2)
Summary and Future Prospects
690(33)
Acknowledgments
693(7)
References
700(23)
Airborne Lidar Systems
723(58)
Edward V. Browell
William B. Grant
Syed Ismail
Introduction
724(1)
Specific Requirements for Airborne Lidar
725(1)
Specific Airborne Lidar Application Areas
726(10)
Aerosols
726(5)
Clouds
731(1)
Polar Stratospheric Clouds
732(1)
Wind Fields
733(3)
Differential Absorption Lidar
736(13)
Global O3 Measurements
736(10)
Global Water Vapor Measurements
746(3)
Resonance Fluorescence Lidar
749(5)
Raman Lidar
754(1)
Atmospheric Temperature, Density
755(1)
Hydrospheric Lidar
756(2)
Laser Altimeters
758(2)
Future Developments Expected
760(1)
Summary and Conclusion
761(20)
References
761(20)
Space-Based Lidar
781(78)
Upendra N. Singh
Syed Ismail
Michael J. Kavaya
David M. Winker
Farzin Amzajerdian
Introduction
783(3)
Technology Development for Space-Based Lidar Missions
786(17)
Introduction
786(1)
The Laser Risk Reduction and Active Optical Remote Sensing Programs
787(2)
Lidar Technologies for Space Missions
789(1)
Lasers
789(3)
Lidar Telescope
792(3)
Detector
795(1)
Direct Detection
796(3)
Coherent Detection
799(4)
Space-Based Lidar for Observation of Aerosols and Clouds
803(12)
Introduction
803(2)
CALIPSO and the CALIOP Instrument
805(6)
Detection Sensitivity
811(2)
Aerosol and Cloud Measurements
813(2)
Lidar Altimetry
815(9)
Introduction
815(2)
Mission Overview
817(1)
Instrument Description
818(1)
Laser Design
819(1)
Receiver Design
820(1)
Laser Pointing Angle Determination
821(1)
Surface Measurements
822(1)
Atmospheric Measurements
823(1)
Wind Measurement from Space
824(21)
Introduction
824(1)
Wind Measurement Requirements
825(4)
Space-Based DWL Measurement Technique
829(4)
DWL Scan Pattern
833(2)
DWL Velocity Error
835(5)
Types of DWL Systems
840(4)
Planned Space Missions
844(1)
Differential Absorption Lidar
845(14)
Introduction
845(1)
Space-Based O3 DIAL
846(1)
Rationale
846(1)
Measurement Objective
847(1)
Measurement Simulations
848(2)
Space-Based H2O DIAL
850(1)
Rationale
850(1)
Measurement Approach and Objective
851(2)
Measurement Simulations
853(2)
Space-Based CO2 DIAL
855(1)
Rationale
855(1)
Measurement Requirements
855(1)
Measurement Approach and Technology Developments
856(3)
Acknowledgments
859(1)
Appendix A
860(7)
Geometry of Space-Based Lidar Remote Sensing
860(7)
Appendix B
867(1)
List of Acronyms
867(1)
References 868(15)
Index 883
Takashi Fujii, Tetsuo Fukuchi