|
|
1 | (36) |
|
|
|
2 | (15) |
|
From Visual Perception to Lidar |
|
|
2 | (1) |
|
What This Book Does Not Consider |
|
|
3 | (2) |
|
|
5 | (1) |
|
Lidar Literature and Information Dissemination |
|
|
6 | (1) |
|
|
7 | (1) |
|
The Lidar Return Signal and Lidar Equation |
|
|
8 | (4) |
|
Atmospheric Parameters that Can be Measured |
|
|
12 | (1) |
|
Interaction Processes Used |
|
|
13 | (3) |
|
|
16 | (1) |
|
Lidars Considered in This Book |
|
|
17 | (13) |
|
Femtosecond White-Light Lidar |
|
|
19 | (2) |
|
Elastic Lidar Measurement of the Troposphere |
|
|
21 | (1) |
|
Trace Gas Species Detection in the Lower Atmosphere by Lidar |
|
|
22 | (1) |
|
Resonance Fluorescence Lidar for Measurements of the Middle and Upper Atmosphere |
|
|
23 | (1) |
|
Fluorescence Spectroscopy and Imaging of Lidar Targets |
|
|
24 | (2) |
|
|
26 | (2) |
|
|
28 | (1) |
|
|
29 | (1) |
|
|
30 | (7) |
|
|
32 | (5) |
|
Femtosecond White-Light Lidar |
|
|
37 | (26) |
|
|
|
|
|
|
|
|
|
|
|
|
|
38 | (2) |
|
|
40 | (2) |
|
Nonlinear Propagation of TW Pulses |
|
|
42 | (7) |
|
|
43 | (2) |
|
Multiphoton Ionization and Plasma Generation |
|
|
45 | (1) |
|
Filamentation of High-Power Laser Beams |
|
|
46 | (2) |
|
White-Light Generation and Self-Phase Modulation |
|
|
48 | (1) |
|
Atmospheric Filamentation Experiments |
|
|
49 | (2) |
|
Lidar Remote Sensing of Atmospheric Traces |
|
|
51 | (3) |
|
|
54 | (4) |
|
|
58 | (5) |
|
|
59 | (1) |
|
|
59 | (4) |
|
Elastic Lidar Measurement of the Troposphere |
|
|
63 | (60) |
|
|
Outline of the Troposphere by Lidar Monitoring |
|
|
65 | (2) |
|
Lidar Equation and Analytical Solution |
|
|
67 | (5) |
|
One-Component Case---Klett Method |
|
|
67 | (4) |
|
Two-Component Case---Fernald Methods |
|
|
71 | (1) |
|
Lidar System and Example of Monitoring |
|
|
72 | (20) |
|
Characteristics of Performance |
|
|
73 | (1) |
|
Single-Channel Lidar with Scanning Mechanism |
|
|
73 | (1) |
|
|
74 | (3) |
|
Polarization Diversity Lidar |
|
|
77 | (1) |
|
Monitoring of Mineral Dust |
|
|
78 | (3) |
|
|
81 | (2) |
|
|
83 | (1) |
|
|
83 | (4) |
|
|
87 | (2) |
|
Combination with Radar --- Cloud Measurement |
|
|
89 | (3) |
|
Monitoring of Aerosol Optical Properties |
|
|
92 | (21) |
|
Model of Aerosol Size Distribution |
|
|
92 | (1) |
|
|
92 | (1) |
|
The Power Law Distribution |
|
|
93 | (1) |
|
Modified Gamma Distribution |
|
|
94 | (1) |
|
Optical Properties of Aerosol and Air Molecule |
|
|
95 | (2) |
|
Monitoring by High-Spectral-Resolution Lidar |
|
|
97 | (3) |
|
Derivation Using a Raman-Mie Lidar |
|
|
100 | (2) |
|
Monitoring by Multiwavelength Lidar |
|
|
102 | (1) |
|
Two-Wavelength Lidar Method |
|
|
102 | (4) |
|
Four-Wavelength Lidar Method |
|
|
106 | (7) |
|
|
113 | (4) |
|
|
113 | (2) |
|
|
115 | (1) |
|
|
116 | (1) |
|
Conclusions and Future Trend |
|
|
117 | (6) |
|
|
118 | (5) |
|
Trace Gas Species Detection in the Lower Atmosphere by Lidar: From Remote Sensing of Atmospheric Pollutants to Possible Air Pollution Abatement Strategies |
|
|
123 | (56) |
|
|
|
|
124 | (1) |
|
Differential Absorption Lidar Equation |
|
|
125 | (2) |
|
The Detection of Trace Gas Species by Dial |
|
|
127 | (5) |
|
Dial Measurements in the UV (200 to 450 nm) |
|
|
132 | (5) |
|
|
132 | (2) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
|
136 | (1) |
|
Dial Measurements in the Near-IR (1 to 5 μm) |
|
|
137 | (1) |
|
Volatile Organic Compounds (VOCs) |
|
|
137 | (1) |
|
|
138 | (1) |
|
Dial Measurements in the Mid-IR (5 to 11 μm) |
|
|
138 | (2) |
|
|
139 | (1) |
|
|
139 | (1) |
|
|
140 | (1) |
|
Tropospheric Ozone as a Special Case Study |
|
|
140 | (15) |
|
Comparison Between Lidar Measurements and Model Predictions |
|
|
155 | (11) |
|
|
157 | (4) |
|
|
161 | (5) |
|
|
166 | (13) |
|
|
167 | (1) |
|
|
168 | (11) |
|
Resonance Fluorescence Lidar for Measurements of the Middle and Upper Atmosphere |
|
|
179 | (254) |
|
|
|
|
182 | (8) |
|
Lidar Study of the Middle and Upper Atmosphere |
|
|
182 | (1) |
|
Lidar Concepts and Classifications |
|
|
183 | (2) |
|
Initial Developments of Resonance Fluorescence Lidar |
|
|
185 | (2) |
|
New Developments of Resonance Fluorescence Lidar |
|
|
187 | (3) |
|
Arrangement of this Chapter |
|
|
190 | (1) |
|
Advanced Technology of Resonance Fluorescence Lidar |
|
|
190 | (131) |
|
Lidar Equations for Resonance Fluorescence Lidar |
|
|
191 | (1) |
|
General Form of the Lidar Equation |
|
|
191 | (3) |
|
Scattering Form of the Lidar Equation |
|
|
194 | (2) |
|
Fluorescence Form of the Lidar Equation |
|
|
196 | (10) |
|
Solutions for the Resonance Fluorescence Lidar Equation |
|
|
206 | (2) |
|
Na Wind/Temperature Lidar |
|
|
208 | (1) |
|
|
208 | (2) |
|
Measurement Principle (Doppler Technique) |
|
|
210 | (18) |
|
Na Doppler Lidar Instrumentation |
|
|
228 | (19) |
|
|
247 | (8) |
|
Lidar Data and Error Analysis |
|
|
255 | (13) |
|
Fe Boltzmann Temperature Lidar |
|
|
268 | (1) |
|
|
268 | (1) |
|
Measurement Principle (Boltzmann Technique) |
|
|
269 | (7) |
|
Fe Boltzmann Lidar Instrumentation |
|
|
276 | (4) |
|
Temperature and Error Analysis |
|
|
280 | (7) |
|
Rayleigh Temperature Retrieval |
|
|
287 | (3) |
|
Temperature Measurement over the North and South Poles |
|
|
290 | (3) |
|
Polar Mesospheric Cloud Detection over Both Poles |
|
|
293 | (3) |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
297 | (4) |
|
K Doppler Lidar Instrumentation |
|
|
301 | (2) |
|
|
303 | (4) |
|
Temperature and Error Analysis |
|
|
307 | (4) |
|
Solid-State Na Doppler Lidar |
|
|
311 | (1) |
|
|
311 | (1) |
|
All-Solid-State Na Temperature Lidar |
|
|
311 | (5) |
|
Solid-State Na Wind/Temperature Lidar |
|
|
316 | (1) |
|
Comparison of Na, Fe, K, and Rayleigh Lidar Techniques |
|
|
317 | (1) |
|
Narrowband Na Doppler Lidar Technique |
|
|
318 | (1) |
|
Fe Boltzmann Temperature Lidar Technique |
|
|
319 | (1) |
|
Narrowband K Doppler Lidar Technique |
|
|
320 | (1) |
|
The Rayleigh Lidar Technique |
|
|
321 | (1) |
|
Key Results of Lidar Measurements in the Middle and Upper Atmosphere |
|
|
321 | (85) |
|
Thermal Structure of the Middle and Upper Atmosphere |
|
|
322 | (1) |
|
Thermal Structure at Polar Latitudes |
|
|
323 | (11) |
|
Thermal Structure at Mid-Latitudes |
|
|
334 | (10) |
|
Thermal Structure at Low Latitudes |
|
|
344 | (6) |
|
Dynamics of the Middle and Upper Atmosphere |
|
|
350 | (1) |
|
Heat, Momentum, and Na Flux |
|
|
350 | (8) |
|
Atmospheric Instability and Gravity Wave Directions |
|
|
358 | (3) |
|
Tidal Study by Full-Diurnal-Cycle Lidar |
|
|
361 | (3) |
|
Atmospheric Metallic Layers and Meteor Detection |
|
|
364 | (1) |
|
Metal Layers and Mesospheric Chemistry |
|
|
364 | (16) |
|
Meteor Trail Detection by Lidar |
|
|
380 | (6) |
|
Polar Mesospheric Clouds (Noctilucent Clouds) |
|
|
386 | (1) |
|
|
386 | (3) |
|
PMC Characteristics Measured by Lidar |
|
|
389 | (17) |
|
Conclusions and Future Outlook |
|
|
406 | (27) |
|
|
412 | (1) |
|
|
412 | (21) |
|
Fluorescence Spectroscopy and Imaging of Lidar Targets |
|
|
433 | (36) |
|
|
|
434 | (2) |
|
|
436 | (4) |
|
Remote Fluorescence Recording |
|
|
440 | (7) |
|
|
440 | (3) |
|
|
443 | (1) |
|
|
443 | (2) |
|
|
445 | (1) |
|
|
446 | (1) |
|
Strategies for Fluorescence Imaging |
|
|
446 | (1) |
|
Illustrations of Fluorescence Lidar Applications |
|
|
447 | (14) |
|
|
447 | (3) |
|
|
450 | (6) |
|
|
456 | (5) |
|
|
461 | (8) |
|
|
461 | (1) |
|
|
462 | (7) |
|
|
469 | (254) |
|
|
|
|
|
|
472 | (2) |
|
|
474 | (8) |
|
|
475 | (4) |
|
Direct Detection Wind Lidar Systems |
|
|
479 | (3) |
|
Doppler Wind Lidar Principle of Operation |
|
|
482 | (26) |
|
|
483 | (2) |
|
|
485 | (2) |
|
Quantum-Limited Optical Detection |
|
|
487 | (2) |
|
|
489 | (3) |
|
|
492 | (1) |
|
Radial Velocity Precision |
|
|
492 | (4) |
|
Vector Wind Velocity Estimation |
|
|
496 | (1) |
|
|
497 | (6) |
|
|
503 | (2) |
|
|
505 | (2) |
|
|
507 | (1) |
|
Doppler Wind Lidar Theory of Operation |
|
|
508 | (102) |
|
Coherent Detection Doppler Wind Lidar Theory |
|
|
509 | (1) |
|
Heterodyne Detection Concept Overview |
|
|
509 | (1) |
|
Heterodyne Detection CNR and Related Concepts |
|
|
510 | (13) |
|
Target-Plane Formalism---General CNR and Antenna Efficiency |
|
|
523 | (9) |
|
Antenna Efficiency Calculations |
|
|
532 | (13) |
|
|
545 | (1) |
|
Refractive Turbulence Effects |
|
|
546 | (4) |
|
Pulsed Coherent Lidar Velocity Estimation Accuracy |
|
|
550 | (14) |
|
Example System Performance Estimation |
|
|
564 | (3) |
|
Coherent Detection Doppler Wind Lidar Theory Summary |
|
|
567 | (3) |
|
Direct Detection Doppler Wind Lidar Theory |
|
|
570 | (2) |
|
Direct Detection Concept Overview |
|
|
572 | (2) |
|
|
574 | (3) |
|
|
577 | (2) |
|
Velocity Measurement Accuracy |
|
|
579 | (17) |
|
Detector Truncation or Overlap and Alignment Efficiency |
|
|
596 | (1) |
|
Refractive Turbulence Effects |
|
|
597 | (1) |
|
Direct Detection Wind Lidar Theory Summary |
|
|
598 | (2) |
|
Comparison of Coherent and Direct Detection Receivers |
|
|
600 | (3) |
|
Coherent Detection Receiver |
|
|
603 | (2) |
|
Direct Detection Receiver |
|
|
605 | (3) |
|
Example Transmitter Requirement Comparison |
|
|
608 | (2) |
|
System Architectures and Example Systems |
|
|
610 | (51) |
|
Coherent Detection Lidar Systems |
|
|
610 | (1) |
|
Coherent Lidar System Architecture |
|
|
610 | (7) |
|
Representative CO2 Coherent Lidar Systems |
|
|
617 | (8) |
|
Representative Solid-State Coherent Lidar Systems |
|
|
625 | (6) |
|
|
631 | (1) |
|
Direct Detection Lidar Architecture |
|
|
632 | (5) |
|
Direct Detection Lidar Receiver Details |
|
|
637 | (9) |
|
Detectors and Detection Efficiency for Direct Detection Doppler Lidar |
|
|
646 | (10) |
|
A Representative Double-Edge Wind Lidar System |
|
|
656 | (3) |
|
A Representative Fringe-Imaging Doppler Wind Lidar System |
|
|
659 | (2) |
|
Wind Measurement Applications |
|
|
661 | (29) |
|
Wind Shear, Gust Front, and Turbulence Measurements |
|
|
662 | (1) |
|
NOAA's 10.6 μm Coherent Lidar |
|
|
662 | (2) |
|
Ecole Polytechnique 10.6 μm Transportable Wind Lidar |
|
|
664 | (1) |
|
NOAA's 2.0 μm Coherent High-Resolution Doppler Lidar |
|
|
664 | (3) |
|
Coherent Technologies' WindTracer |
|
|
667 | (1) |
|
|
668 | (2) |
|
Coherent Technologies' Flashlamp-Pumped 2.0 μm Coherent Lidar |
|
|
670 | (1) |
|
ALOMAR DWTS 532 nm ``Fringe-Imaging'' Direct Detection Lidar |
|
|
671 | (1) |
|
Goddard's ``Double-Edge'' Direct Detection Lidar |
|
|
671 | (2) |
|
Michigan Aerospace's GroundWinds 532 nm ``Fringe-Imaging'' Direct Detection Lidar |
|
|
673 | (1) |
|
|
673 | (1) |
|
DLR's 10.6 μm CW WIND Coherent Lidar |
|
|
673 | (2) |
|
Coherent Technologies' 2 μm Coherent Lidar |
|
|
675 | (3) |
|
Airborne Clear Air Turbulence Detection |
|
|
678 | (1) |
|
QinetiQ's (formely DRA) LATAS 10.6 μm CW Coherent Lidar |
|
|
678 | (2) |
|
Coherent Technologies' ACLAIM 2.012 μm Coherent Lidar |
|
|
680 | (1) |
|
Aircraft Wake Vortex Detection and Tracking |
|
|
680 | (2) |
|
QinetiQ's (formerly DRA) 10.6 μm CW Coherent Lidar |
|
|
682 | (2) |
|
Coherent Technologies' 2.0 μm Coherent Lidar |
|
|
684 | (1) |
|
|
684 | (4) |
|
Aerosol Detection and Tracking |
|
|
688 | (2) |
|
Summary and Future Prospects |
|
|
690 | (33) |
|
|
693 | (7) |
|
|
700 | (23) |
|
|
723 | (58) |
|
|
|
|
|
724 | (1) |
|
Specific Requirements for Airborne Lidar |
|
|
725 | (1) |
|
Specific Airborne Lidar Application Areas |
|
|
726 | (10) |
|
|
726 | (5) |
|
|
731 | (1) |
|
Polar Stratospheric Clouds |
|
|
732 | (1) |
|
|
733 | (3) |
|
Differential Absorption Lidar |
|
|
736 | (13) |
|
|
736 | (10) |
|
Global Water Vapor Measurements |
|
|
746 | (3) |
|
Resonance Fluorescence Lidar |
|
|
749 | (5) |
|
|
754 | (1) |
|
Atmospheric Temperature, Density |
|
|
755 | (1) |
|
|
756 | (2) |
|
|
758 | (2) |
|
Future Developments Expected |
|
|
760 | (1) |
|
|
761 | (20) |
|
|
761 | (20) |
|
|
781 | (78) |
|
|
|
|
|
|
|
783 | (3) |
|
Technology Development for Space-Based Lidar Missions |
|
|
786 | (17) |
|
|
786 | (1) |
|
The Laser Risk Reduction and Active Optical Remote Sensing Programs |
|
|
787 | (2) |
|
Lidar Technologies for Space Missions |
|
|
789 | (1) |
|
|
789 | (3) |
|
|
792 | (3) |
|
|
795 | (1) |
|
|
796 | (3) |
|
|
799 | (4) |
|
Space-Based Lidar for Observation of Aerosols and Clouds |
|
|
803 | (12) |
|
|
803 | (2) |
|
CALIPSO and the CALIOP Instrument |
|
|
805 | (6) |
|
|
811 | (2) |
|
Aerosol and Cloud Measurements |
|
|
813 | (2) |
|
|
815 | (9) |
|
|
815 | (2) |
|
|
817 | (1) |
|
|
818 | (1) |
|
|
819 | (1) |
|
|
820 | (1) |
|
Laser Pointing Angle Determination |
|
|
821 | (1) |
|
|
822 | (1) |
|
|
823 | (1) |
|
Wind Measurement from Space |
|
|
824 | (21) |
|
|
824 | (1) |
|
Wind Measurement Requirements |
|
|
825 | (4) |
|
Space-Based DWL Measurement Technique |
|
|
829 | (4) |
|
|
833 | (2) |
|
|
835 | (5) |
|
|
840 | (4) |
|
|
844 | (1) |
|
Differential Absorption Lidar |
|
|
845 | (14) |
|
|
845 | (1) |
|
|
846 | (1) |
|
|
846 | (1) |
|
|
847 | (1) |
|
|
848 | (2) |
|
|
850 | (1) |
|
|
850 | (1) |
|
Measurement Approach and Objective |
|
|
851 | (2) |
|
|
853 | (2) |
|
|
855 | (1) |
|
|
855 | (1) |
|
|
855 | (1) |
|
Measurement Approach and Technology Developments |
|
|
856 | (3) |
|
|
859 | (1) |
|
|
860 | (7) |
|
Geometry of Space-Based Lidar Remote Sensing |
|
|
860 | (7) |
|
|
867 | (1) |
|
|
867 | (1) |
References |
|
868 | (15) |
Index |
|
883 | |