Atjaunināt sīkdatņu piekrišanu

E-grāmata: Laser Surface Engineering: Processes and Applications

Edited by (Coventry University), Edited by (University of Chester, UK)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 289,28 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications. Part one looks at laser heat treatment, part two covers laser additive manufacturing such as laser-enhanced electroplating, and part three discusses laser micromachining, structuring and surface modification. Chemical and biological applications of laser surface engineering are explored in part four, including ways to improve the surface corrosion properties of metals.
  • Provides an overview of thermal surface treatments using lasers, including the treatment of steels, light metal alloys, polycrystalline silicon and technical ceramics
  • Addresses the development of new metallic materials, innovations in laser cladding and direct metal deposition, and the fabrication of tuneable micro- and nano-scale surface structures
  • Chapters also cover laser structuring, surface modification, and the chemical and biological applications of laser surface engineering

Papildus informācija

This book provides an overview of laser surface engineering, different techniques, laser-material interactions and the advantages and disadvantages for different applications.
List of contributors
xiii
Woodhead Publishing Series in Electronic and Optical Materials xvii
Preface xxiii
Part One Thermal surface treatments using lasers
1(134)
1 Structures, properties and development trends of laser-surface-treated hot-work steels, light metal alloys and polycrystalline silicon
3(30)
L.A. Dobrzanski
T. Tanski
A.D. Dobrzanska-Danikiewicz
E. Jonda
M. Bonek
A. Drygala
1.1 Introduction
3(1)
1.2 Laser treatment of hot-work alloy tool steels
4(7)
1.3 Laser treatment of light metal casting alloys
11(4)
1.4 Texturization of polycrystalline silicon for the purpose of photovoltaics
15(6)
1.5 Development trends of selected laser-treated engineering materials determined using new computer-integrated prediction methodology
21(6)
1.6 Conclusion
27(3)
1.7 Comments
30(3)
References
30(3)
2 Laser nitriding and carburization of materials
33(26)
D. Hoche
J. Kaspar
P. Schaaf
2.1 Introduction
33(1)
2.2 Overview on surface alloying of materials by laser irradiation
34(3)
2.3 Laser nitriding of titanium
37(7)
2.4 Laser carburization of materials
44(6)
2.5 Future trends
50(1)
2.6 Sources of further information and advice
51(8)
Acknowledgment
51(1)
References
51(8)
3 Mechanical properties improvement of metallic rolls by laser surface alloying
59(38)
G. Sun
R. Zhou
3.1 Introduction
59(1)
3.2 Mechanical properties improvement of metallic rolls by laser surface alloying: experimental procedures
60(2)
3.3 Laser surface alloying of C-B-W-Cr nano-powders on nodular cast-iron rolls (NCIR)
62(10)
3.4 Laser surface alloying of NiCr-Cr3C2 powders on semisteel rolls
72(8)
3.5 Laser surface alloying of NiCr-Cr3C2 powders on cast steel rolls
80(9)
3.6 Wear behavior of the three kinds of alloyed layers and three roll substrates
89(2)
3.7 Conclusions
91(6)
References
92(5)
4 Laser surface treatment of AISI 304 steel with the presence of B4C particles at the surface
97(10)
B.S. Yilbas
F. Patel
C. Karatas
4.1 Introduction
97(1)
4.2 Experimental producers
98(1)
4.3 Results and discussion
99(5)
4.4 Conclusion
104(3)
Acknowledgment
104(1)
References
105(2)
5 Characterization and modification of technical ceramics through laser surface engineering
107(28)
P. Shukla
J. Lawrence
5.1 Introduction
107(1)
5.2 Background of laser surface treatment of technical ceramics
108(1)
5.3 Materials and experimental procedures
109(2)
5.4 Establishment of laser processing parameters and associated issues
111(1)
5.5 Modifications of Si3N4 and ZrO2 technical ceramics through laser surface treatment
112(7)
5.6 Compositional changes
119(3)
5.7 Microstructural modifications
122(6)
5.8 Fracture toughness (K1c) modifications
128(1)
5.9 Temperature distribution and phase transition
129(2)
5.10 Conclusions
131(4)
References
132(3)
Part Two Laser additive manufacturing in surface treatment and engineering
135(180)
6 Compositional modification of Ni-base alloys for laser-deposition technologies
137(26)
I. Hemmati
V. Ocelik
J.Th.M. De Hosson
6.1 Introduction
137(2)
6.2 Microstructural design to improve toughness
139(1)
6.3 Selection of the refining element
140(2)
6.4 Experimental procedure
142(3)
6.5 Microstructures and phases
145(8)
6.6 Analysis of crack growth paths
153(3)
6.7 Microstructural evolutions
156(2)
6.8 The microstructural refinement--cracking relationship
158(2)
6.9 Conclusions
160(3)
Acknowledgments
160(1)
References
160(3)
7 New metallic materials development by laser additive manufacturing
163(18)
Dongdong Gu
7.1 Introduction
163(1)
7.2 Selective laser melting of TiC/Ti nanocomposites parts with novel nanoscale reinforcement and enhanced wear performance
164(8)
7.3 Development of porous stainless steel with controllable microcellular features using selective laser melting
172(5)
7.4 Conclusion
177(1)
7.5 Future trends
177(4)
Acknowledgments
178(1)
References
179(2)
8 Innovations in laser cladding and direct laser metal deposition
181(12)
C. Leyens
E. Beyer
8.1 Introduction
181(1)
8.2 Fundamentals of laser cladding and direct laser metal deposition
182(3)
8.3 High precision 2D- and 3D-processing
185(2)
8.4 High productivity processing
187(2)
8.5 Process control
189(2)
8.6 Conclusions and future trends
191(2)
Acknowledgments
191(1)
References
191(2)
9 Laser-enhanced electroplating for generating micro/nanoparticles with continuous wave and pulsed Nd-YAG laser interactions
193(20)
J. Lin
S.-H. Chen
9.1 Introduction
193(3)
9.2 Experimental setup
196(4)
9.3 Results and discussion
200(10)
9.4 Conclusions
210(3)
Acknowledgment
210(1)
References
210(3)
10 Laser hybrid fabrication of tunable micro- and nano-scale surface structures and their functionalization
213(24)
M. Zhong
T. Huang
10.1 Introduction
213(2)
10.2 Fabrication of nanoporous copper structures
215(5)
10.3 Fabrication of 3D manganese-based nanoporous structure (3D-Mn-NPS)
220(3)
10.4 Fabrication of micro-nano hierarchical Cu/Cu2O structure
223(5)
10.5 Functionalization of tunable micro-nano surface structures
228(5)
10.6 Conclusion
233(4)
References
234(3)
11 Laser-controlled intermetallics synthesis during surface cladding
237(50)
I.V. Shishkovsky
11.1 Introduction
237(1)
11.2 Laser control of self-propagated high-temperature synthesis (SHS) as synergism of the two high-tech processes
238(10)
11.3 Overlapping of laser cladding and SHS processes for the fabrication of the functional graded (FG) iron, nickel, and titanium aluminides in the surface layers
248(15)
11.4 Temperature distribution during the layerwise surface laser remelting of exothermal powder compositions
263(5)
11.5 Theoretical and numerical modelling of selective laser sintering/melting (SLS/M) and SHS hybrid processes
268(10)
11.6 Conclusion
278(9)
Acknowledgment
282(1)
References
282(5)
12 Deposition and surface modification of thin solid structures by high-intensity pulsed laser irradiation
287(28)
A.C. Popescu
M. Ulmeanu
C. Ristoscu
I.N. Mihailescu
12.1 Introduction
287(1)
12.2 Thin films with patterned surfaces obtained by laser deposition methods
288(15)
12.3 Direct femtosecond laser surface processing in far- and near-field
303(4)
12.4 Resources
307(1)
12.5 Conclusions
308(7)
Acknowledgments
309(1)
References
309(6)
Part Three Laser struturing and surface modification
315(232)
13 Tailoring material properties induced by laser surface processing
317(42)
H.Y. Zheng
Y.C. Guan
X.C. Wang
Z.K. Wang
13.1 Introduction
317(1)
13.2 Laser texturing of silicon for improving surface functionalities
318(15)
13.3 Femtosecond laser interactions with polymethyl methacrylate (PMMA)
333(9)
13.4 Nd: YAG laser melting of magnesium alloy for corrosion resistance and surface wettability improvement
342(9)
13.5 Conclusions
351(8)
Acknowledgments
352(1)
References
353(6)
14 Femtosecond laser micromachining on optical fiber
359(24)
D.N. Wang
Y. Wang
C.R. Liao
14.1 Introduction
359(2)
14.2 Femtosecond laser micromachining of optical fibers
361(2)
14.3 Optical fiber microstructures fabricated by femtosecond laser micromachining
363(4)
14.4 Optical sensing devices based on optical fiber microstructures
367(8)
14.5 Current and future trends
375(8)
References
378(5)
15 Spatiotemporal manipulation of ultrashort pulses for three-dimensional (3-D) laser processing in glass materials
383(22)
F. He
J. Ni
B. Zeng
Y. Cheng
K. Sugioka
15.1 Introduction
383(2)
15.2 Tailoring the focal spot by spatiotemporal manipulation of ultrashort laser pulses
385(4)
15.3 Three-dimensional (3-D) istropic resolutions at low numerical apertures (NAs) using the combination of slit beam shaping and spatiotemporal focusing methods
389(4)
15.4 Visualization of the spatiotemporally focused femtosecond laser beam using two-photon fluorescence excitation
393(4)
15.5 Enhanced femosecond laser filamentation using spatiotemporally focused beams
397(3)
15.6 Conclusion and future trends
400(5)
Acknowledgment
400(1)
References
400(3)
Appendix: derivation of the angular chirp coefficient
403(2)
16 Tribology optimization by laser surface texturing: from bulk materials to surface coatings
405(18)
Q. Ding
L. Wang
L. Hu
16.1 Introduction
405(1)
16.2 Laser ablation behaviors of different materials
405(6)
16.3 Tribological application of laser surface texturing (LST) to bulk materials
411(4)
16.4 Tribological application of LST to surface coatings
415(3)
16.5 Conclusion and future trends
418(5)
Acknowledgments
419(1)
References
419(4)
17 Fabrication of periodic submicrometer and micrometer arrays using laser interference-based methods
423(18)
A.F. Lasagni
E. Beyer
17.1 Introduction
423(1)
17.2 Multibeam interference patterns
424(1)
17.3 Laser interference lithography
425(5)
17.4 Direct laser interference patterning
430(6)
17.5 Laser interference patterning systems
436(5)
References
436(5)
18 Ultrashort pulsed laser surface texturing
441(14)
E. Toyserkani
N. Rasti
18.1 Introduction
441(1)
18.2 Physics of thermal versus nonthermal ultrashort pulsed laser surface texturing
441(6)
18.3 Nanosecond pulsed surface texturing
447(1)
18.4 Picosecond pulsed surface texturing
448(2)
18.5 Femtosecond pulsed laser surface texturing
450(1)
18.6 Attosecond pulsed laser surface texturing: would it reasonably be applicable to surface modifications?
450(1)
18.7 Conclusion
451(4)
References
451(4)
19 Laser-guided discharge surface texturing
455(14)
Z.-T. Wang
M.-J. Yang
19.1 Introduction
455(1)
19.2 Mechanisms of laser-guided discharge texturing (LGDT)
456(2)
19.3 Experiments of LGDT
458(7)
19.4 Comparison with Nd: YAG laser-textured surfacing (YAGLT) and electrical discharge surfacing (EDT)
465(1)
19.5 Conclusions
465(4)
References
466(3)
20 Laser surface treatment to improve the surface corrosion properties of nickel-aluminum bronze
469(14)
R. Cottam
M. Brandt
20.1 Introduction
469(1)
20.2 Solid-state laser treatment and development of laser-processing parameters
470(4)
20.3 Experimental procedure
474(1)
20.4 Characterization of laser-processed microstructure
475(3)
20.5 Corrosion performance
478(1)
20.6 Conclusion
479(4)
Acknowledgments
480(1)
References
481(2)
21 Laser surface engineering of titanium and its alloys for improved wear, corrosion and high-temperature oxidation resistance
483(40)
J. Dutta Majumdar
I. Manna
21.1 Introduction
483(1)
21.2 Titanium and its alloys
484(1)
21.3 Physical metallurgy of titanium and its alloys
485(1)
21.4 Alloy classification
486(1)
21.5 Surface dependent engineering properties
487(2)
21.6 Surface engineering
489(1)
21.7 Laser surface engineering
489(4)
21.8 Laser surface engineering of titanium and its alloys
493(26)
21.9 Conclusion and future trends
519(4)
References
520(3)
22 Laser-initiated ablation of materials
523(24)
C. Dowding
A. Borman
22.1 Introduction
523(1)
22.2 Mechanisms involved in ablation
524(3)
22.3 Demagnified image ablation machining using excimer laser beams
527(5)
22.4 Issues arising from ablation
532(3)
22.5 Possible solutions to such issues
535(4)
22.6 Methods of examining ablation mechanisms
539(3)
22.7 Conclusion
542(5)
References
543(4)
Part Four Chemical and biological applications of laser surface engineering
547(130)
23 Luminescence spectroscopy as versatile probes for chemical diagnostics on the solid--liquid interface
549(16)
N. Aoyagi
T. Saito
23.1 Introduction
549(2)
23.2 Chemical analysis of lanthanide and actinide ions by time-resolved laser-induced fluorescence spectroscopy (TRLFS)
551(2)
23.3 Analysis of TRLFS data
553(1)
23.4 Recent progress in chemical analysis of actinides by laser spectroscopy
554(5)
23.5 Recent trends in chemical analysis of actinides by laser spectroscopy
559(3)
23.6 Future trends in laser spectroscopy
562(3)
References
562(3)
24 Ablation effects of femtosecond laser functionalization on surfaces
565(18)
B. Raillard
F. Mucklich
24.1 Introduction
565(1)
24.2 Laser techniques and materials
565(1)
24.3 Topographical effects
566(6)
24.4 Chemical and microstructural effects
572(4)
24.5 Potential applications
576(3)
24.6 Conclusions
579(4)
References
579(4)
25 Laser surface engineering in dentistry
583(20)
R.S. Oliveira
J.T. Pereira
C.M. Assuncao
S.B. Werle
J.A. Rodrigues
25.1 Introduction
583(1)
25.2 Effect of lasers on soft tissues
584(6)
25.3 Effect of lasers on hard tissues
590(5)
25.4 Future trends
595(8)
References
596(7)
26 Laser-assisted fabrication of tissue engineering scaffolds from titanium alloys
603(50)
I.V. Shishkovsky
26.1 Introduction
603(4)
26.2 Influence of the selective laser sintering (SLS)-technique-obtained 3-D porous matrix for tissue engineering on the culture of multipotent mesenchymal stem cells
607(16)
26.3 Preclinical testing of SLS-obtained titan and nitinol implants' biocompatibility and biointegration
623(14)
26.4 Finite-elemental optimization of SLS-obtained implants' porous structure
637(7)
26.5 The SLS-assisted functional design of porous drug delivery systems based on nitinol
644(3)
26.6 Future remarks
647(6)
Acknowledgments
649(1)
References
649(4)
27 Laser melting of NiTi and its effects on in vitro mesenchymal stem cell responses
653(24)
D.G. Waugh
J. Lawrence
C.W. Chan
I. Hussain
H.C. Man
27.1 Introduction
653(4)
27.2 Experimental details
657(3)
27.3 Results and discussion
660(12)
27.4 Conclusions
672(5)
References
673(4)
Index 677
Professor Jonathan Lawrence is Director of the Laser Engineering and Manufacturing Group at Coventry University, and Editor-in-Chief of Lasers in Engineering and International Journal of Laser Science: Fundamental Theory and Analytical Methods. His work has attracted over £5M in research funding and yielded six patents. He has published eight books and over 140 journal papers. David Waugh, University of Chester, UK