Part I: Fundamentals of Lasers |
|
|
|
3 | (6) |
|
|
9 | (24) |
|
|
9 | (1) |
|
|
9 | (4) |
|
2.3 Linearly Polarized Waves |
|
|
13 | (2) |
|
2.4 Circularly and Elliptically Polarized Waves |
|
|
15 | (2) |
|
2.5 The Diffraction Integral |
|
|
17 | (2) |
|
2.6 Diffraction of a Gaussian Beam |
|
|
19 | (4) |
|
2.7 Intensity Distribution at the Back Focal Plane of a Lens |
|
|
23 | (1) |
|
2.8 Two-Beam Interference |
|
|
24 | (1) |
|
2.9 Multiple Reflections from a Plane Parallel Film |
|
|
25 | (4) |
|
2.10 Modes of the Fabry-Perot Cavity |
|
|
29 | (1) |
|
|
30 | (3) |
|
3 Elements of Quantum Mechanics |
|
|
33 | (30) |
|
|
33 | (1) |
|
3.2 The One-Dimensional Schrodinger Equation |
|
|
33 | (9) |
|
3.3 The Three-Dimensional Schrodinger Equation |
|
|
42 | (2) |
|
3.4 Physical Interpretation of Psi and Its Normalization |
|
|
44 | (3) |
|
|
46 | (1) |
|
3.5 Expectation Values of Dynamical Quantities |
|
|
47 | (2) |
|
|
49 | (1) |
|
3.7 Orthogonality of Wave Functions |
|
|
50 | (1) |
|
3.8 Spherically Symmetric Potentials |
|
|
51 | (2) |
|
|
53 | (6) |
|
3.9.1 The Hydrogen-Like Atom Problem |
|
|
54 | (5) |
|
|
59 | (4) |
|
4 Einstein Coefficients and Light Amplification |
|
|
63 | (34) |
|
|
63 | (1) |
|
4.2 The Einstein Coefficients |
|
|
63 | (6) |
|
4.2.1 Absorption and Emission Cross Sections |
|
|
68 | (1) |
|
|
69 | (3) |
|
4.4 The Threshold Condition |
|
|
72 | (2) |
|
4.5 Line Broadening Mechanisms |
|
|
74 | (7) |
|
|
75 | (2) |
|
4.5.2 Collision Broadening |
|
|
77 | (2) |
|
|
79 | (2) |
|
4.6 Saturation Behavior of Homogeneously and Inhomogeneously Broadened Transitions |
|
|
81 | (3) |
|
4.7 Quantum Theory for the Evaluation of the Transition Rates and Einstein Coefficients |
|
|
84 | (7) |
|
4.7.1 Interaction with Radiation Having a Broad Spectrum |
|
|
87 | (4) |
|
4.7.2 Interaction of a Near-Monochromatic Wave with an Atom Having a Broad Frequency Response |
|
|
91 | (1) |
|
4.8 More Accurate Solution for the Two-Level System |
|
|
91 | (4) |
|
|
95 | (2) |
|
|
97 | (24) |
|
|
97 | (1) |
|
|
98 | (3) |
|
5.3 The Three-Level Laser System |
|
|
101 | (4) |
|
5.4 The Four-Level Laser System |
|
|
105 | (5) |
|
5.5 Variation of Laser Power Around Threshold |
|
|
110 | (7) |
|
5.6 Optimum Output Coupling |
|
|
117 | (2) |
|
|
119 | (2) |
|
6 Semiclassical Theory of the Laser |
|
|
121 | (22) |
|
|
121 | (1) |
|
|
121 | (7) |
|
6.3 Polarization of the Cavity Medium |
|
|
128 | (15) |
|
|
131 | (5) |
|
6.3.2 Higher Order Theory |
|
|
136 | (7) |
|
|
143 | (58) |
|
|
143 | (1) |
|
7.2 Modes of a Rectangular Cavity and the Open Planar Resonator |
|
|
144 | (7) |
|
7.3 Spherical Mirror Resonators |
|
|
151 | (2) |
|
|
153 | (2) |
|
7.5 The Ultimate Linewidth of a Laser |
|
|
155 | (2) |
|
|
157 | (7) |
|
7.6.1 Transverse Mode Selection |
|
|
158 | (1) |
|
7.6.2 Longitudinal Mode Selection |
|
|
159 | (5) |
|
7.7 Pulsed Operation of Lasers |
|
|
164 | (18) |
|
|
164 | (7) |
|
7.7.2 Techniques for Q-Switching |
|
|
171 | (2) |
|
|
173 | (9) |
|
7.8 Modes of Confocal Resonator System |
|
|
182 | (8) |
|
7.9 Modes of a General Spherical Resonator |
|
|
190 | (3) |
|
|
193 | (8) |
|
8 Vector Spaces and Linear Operators: Dirac Notation |
|
|
201 | (24) |
|
|
201 | (1) |
|
8.2 The Bra and Ket Notation |
|
|
201 | (1) |
|
|
202 | (2) |
|
8.4 The Eigenvalue Equation |
|
|
204 | (1) |
|
|
205 | (1) |
|
8.6 The Harmonic Oscillator Problem |
|
|
206 | (9) |
|
8.6.1 The Number Operator |
|
|
211 | (1) |
|
8.6.2 The Uncertainty Product |
|
|
211 | (1) |
|
8.6.3 The Coherent States |
|
|
212 | (3) |
|
8.7 Time Development of States |
|
|
215 | (1) |
|
|
216 | (3) |
|
8.9 The Schr6dinger and Heisenberg Pictures |
|
|
219 | (3) |
|
|
222 | (3) |
|
9 Quantum Theory of Interaction of Radiation Field with Matter |
|
|
225 | (38) |
|
|
225 | (1) |
|
9.2 Quantization of the Electromagnetic Field |
|
|
225 | (9) |
|
9.3 The Eigenkets of the Hamiltonian |
|
|
234 | (5) |
|
|
239 | (3) |
|
9.5 Squeezed States of Light |
|
|
242 | (4) |
|
|
246 | (5) |
|
|
251 | (3) |
|
9.8 Photons Incident on a Beam Splitter |
|
|
254 | (5) |
|
9.8.1 Single-Photon Incident on a Beam Splitter |
|
|
255 | (3) |
|
9.8.2 Moving Mirror in One Arm |
|
|
258 | (1) |
|
|
259 | (4) |
|
|
263 | (14) |
|
|
263 | (1) |
|
10.2 Laser Beam Characteristics |
|
|
263 | (6) |
|
10.3 Coherence Properties of Laser Light |
|
|
269 | (8) |
|
10.3.1 Temporal Coherence |
|
|
269 | (2) |
|
|
271 | (6) |
|
|
277 | (14) |
|
|
277 | (1) |
|
|
277 | (3) |
|
11.3 Neodymium-Based Lasers |
|
|
280 | (3) |
|
|
281 | (1) |
|
|
282 | (1) |
|
11.4 Titanium Sapphire Laser |
|
|
283 | (1) |
|
|
283 | (2) |
|
|
285 | (1) |
|
|
286 | (2) |
|
|
288 | (1) |
|
|
289 | (2) |
|
12 Doped Fiber Amplifiers and Lasers |
|
|
291 | (32) |
|
|
291 | (1) |
|
|
291 | (4) |
|
12.3 Basic Equations for Amplification in Erbium-Doped Fiber |
|
|
295 | (9) |
|
12.3.1 Gaussian Approximation |
|
|
300 | (1) |
|
12.3.2 Gaussian Envelope Approximation |
|
|
301 | (1) |
|
12.3.3 Solutions Under Steady State |
|
|
302 | (2) |
|
|
304 | (7) |
|
12.4.1 Minimum Required Doped Fiber Length |
|
|
305 | (1) |
|
|
306 | (1) |
|
12.4.3 Laser Output Power |
|
|
307 | (4) |
|
|
311 | (1) |
|
12.5 Erbium-Doped Fiber Amplifier |
|
|
311 | (3) |
|
12.5.1 Transparency Power |
|
|
313 | (1) |
|
12.6 Mode Locking in Fiber Lasers |
|
|
314 | (6) |
|
12.6.1 Non-linear Polarization Rotation |
|
|
315 | (2) |
|
12.6.2 Mode Locking Using Non-linear Polarization Rotation |
|
|
317 | (2) |
|
12.6.3 Semiconductor Saturable Absorbers |
|
|
319 | (1) |
|
|
320 | (3) |
|
|
323 | (40) |
|
|
323 | (1) |
|
13.2 Some Basics of Semiconductors |
|
|
323 | (4) |
|
|
324 | (3) |
|
13.3 Optical Gain in Semiconductors |
|
|
327 | (9) |
|
|
327 | (1) |
|
13.3.2 Probability of Occupancy of States |
|
|
328 | (1) |
|
13.3.3 Interaction with Light |
|
|
329 | (2) |
|
13.3.4 Joint Density of States |
|
|
331 | (2) |
|
13.3.5 Absorption and Emission Rates |
|
|
333 | (1) |
|
13.3.6 Light Amplification |
|
|
334 | (2) |
|
|
336 | (13) |
|
13.4.1 Electron-Hole Population and Quasi-Fermi Levels |
|
|
340 | (3) |
|
13.4.2 Gain in a Forward-Biased p-n Junction |
|
|
343 | (2) |
|
|
345 | (1) |
|
13.4.4 Heterostructure Lasers |
|
|
346 | (3) |
|
|
349 | (7) |
|
13.5.1 Joint Density of States |
|
|
353 | (3) |
|
|
356 | (1) |
|
13.7 Laser Diode Characteristics |
|
|
357 | (3) |
|
13.8 Vertical Cavity Surface-Emitting Lasers (VCSELs) |
|
|
360 | (2) |
|
|
362 | (1) |
|
14 Optical Parametric Oscillators |
|
|
363 | (26) |
|
|
363 | (1) |
|
14.2 Optical Non-linearity |
|
|
363 | (6) |
|
14.3 Parametric Amplification |
|
|
369 | (4) |
|
14.4 Singly Resonant Oscillator |
|
|
373 | (2) |
|
14.5 Doubly Resonant Oscillator |
|
|
375 | (3) |
|
|
378 | (1) |
|
|
378 | (5) |
|
|
383 | (6) |
Part II: Some Important Applications of Lasers |
|
|
15 Spatial Frequency Filtering and Holography |
|
|
389 | (14) |
|
|
389 | (1) |
|
15.2 Spatial Frequency Filtering |
|
|
389 | (6) |
|
|
395 | (5) |
|
|
400 | (3) |
|
|
403 | (14) |
|
|
403 | (1) |
|
|
403 | (2) |
|
16.3 The Laser Energy Requirements |
|
|
405 | (3) |
|
16.4 The Laser-Induced Fusion Reactor |
|
|
408 | (9) |
|
17 Light Wave Communications |
|
|
417 | (28) |
|
|
417 | (1) |
|
17.2 Carrier Wave Communication |
|
|
417 | (9) |
|
|
418 | (3) |
|
17.2.2 Digital Modulation |
|
|
421 | (5) |
|
17.3 Optical Fibers in Communication |
|
|
426 | (1) |
|
|
427 | (1) |
|
|
428 | (1) |
|
17.6 Attenuation of Optical Fibers |
|
|
429 | (3) |
|
17.7 Numerical Aperture of the Fiber |
|
|
432 | (1) |
|
17.8 Multimode and Single-Mode Fibers |
|
|
433 | (1) |
|
|
434 | (2) |
|
17.9.1 Spot Size of the Fundamental Mode |
|
|
435 | (1) |
|
17.10 Pulse Dispersion in Optical Fibers |
|
|
436 | (5) |
|
17.10.1 Dispersion in Multimode Fibers |
|
|
436 | (2) |
|
17.10.2 Material Dispersion |
|
|
438 | (1) |
|
17.10.3 Dispersion and Bit Rate |
|
|
438 | (1) |
|
17.10.4 Dispersion in Single-Mode Fibers |
|
|
439 | (2) |
|
17.10.5 Dispersion and Maximum Bit Rate in Single-Mode Fibers |
|
|
441 | (1) |
|
|
441 | (4) |
|
|
445 | (26) |
|
|
445 | (1) |
|
18.2 Second-Harmonic Generation |
|
|
445 | (5) |
|
18.3 Stimulated Raman Emission |
|
|
450 | (6) |
|
18.4 Intensity-Dependent Refractive Index |
|
|
456 | (2) |
|
|
458 | (1) |
|
18.6 Lasers and Ether Drift |
|
|
459 | (1) |
|
18.7 Lasers and Gravitational Waves |
|
|
460 | (1) |
|
18.8 Rotation of the Earth |
|
|
461 | (2) |
|
|
463 | (2) |
|
18.10 Lasers in Isotope Separation |
|
|
465 | (4) |
|
18.10.1 Separation Using Radiation Pressure |
|
|
466 | (1) |
|
18.10.2 Separation by Selective Photoionization or Photodissociation |
|
|
467 | (1) |
|
18.10.3 Photochemical Separation |
|
|
468 | (1) |
|
|
469 | (2) |
|
|
471 | (38) |
|
|
471 | (2) |
|
19.2 Applications in Material Processing |
|
|
473 | (6) |
|
|
473 | (2) |
|
|
475 | (1) |
|
|
476 | (3) |
|
19.2.4 Other Applications |
|
|
479 | (1) |
|
|
479 | (4) |
|
|
483 | (2) |
|
|
485 | (1) |
|
19.6 Precision Length Measurement |
|
|
486 | (1) |
|
19.7 Laser Interferometry and Speckle Metrology |
|
|
487 | (14) |
|
19.7.1 Homodyne and Heterodyne Interferometry |
|
|
488 | (3) |
|
19.7.2 Holographic Interferometry |
|
|
491 | (2) |
|
19.7.3 Laser Interferometry Lithography |
|
|
493 | (1) |
|
|
494 | (7) |
|
19.8 Velocity Measurement |
|
|
501 | (5) |
|
19.8.1 Lasers in Information Storage |
|
|
502 | (3) |
|
|
505 | (1) |
|
|
506 | (3) |
|
|
509 | (84) |
|
Production of coherent radiation by atoms and molecules |
|
|
511 | (30) |
|
|
|
541 | (8) |
|
|
|
549 | (18) |
|
|
|
567 | (26) |
|
Appendix |
|
593 | (40) |
|
A Solution for the Harmonic Oscillator Equation |
|
|
593 | (4) |
|
B The Solution of the Radial Part of the Schrodinger Equation |
|
|
597 | (6) |
|
|
603 | (10) |
|
|
613 | (4) |
|
|
617 | (4) |
|
F Fourier Transforming Property of a Lens |
|
|
621 | (4) |
|
G The Natural Lineshape Function |
|
|
625 | (4) |
|
H Nonlinear polarization in optical fibers |
|
|
629 | (4) |
References and Suggested Reading |
|
633 | (6) |
Index |
|
639 | |