Atjaunināt sīkdatņu piekrišanu

E-grāmata: Lasers: Fundamentals and Applications

  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 27-Sep-2010
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781441964427
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Graduate Texts in Physics
  • Izdošanas datums: 27-Sep-2010
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781441964427
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Ever since their invention in 1960, lasers have assumed tremendous importance in the fields of science, engineering and technology because of their use both in basic research and in various technological applications. Lasers: Theory and Applications 2nd Edition will provide a coherent presentation of the basic physics behind the working of the laser along with some of their most important applications. Numerical examples are scattered throughout the book for helping the student gain a better appreciation of the concepts and problems at the end of each chapter and provides the student a better understanding of the basics and help in applying the concepts to practical situations. This book serves as a text in a course on lasers and their applications for students majoring in various disciplines such as Physics, Chemistry and Electrical Engineering.

Updated and revised, this second edition provides a coherent presentation of the basic physics behind lasers, along with some of their most important applications. Numerical examples are scattered throughout the book, and problems are included at the end of each chapter.
Part I: Fundamentals of Lasers
1 Introduction
3(6)
2 Basic Optics
9(24)
2.1 Introduction
9(1)
2.2 The Wave Equation
9(4)
2.3 Linearly Polarized Waves
13(2)
2.4 Circularly and Elliptically Polarized Waves
15(2)
2.5 The Diffraction Integral
17(2)
2.6 Diffraction of a Gaussian Beam
19(4)
2.7 Intensity Distribution at the Back Focal Plane of a Lens
23(1)
2.8 Two-Beam Interference
24(1)
2.9 Multiple Reflections from a Plane Parallel Film
25(4)
2.10 Modes of the Fabry-Perot Cavity
29(1)
Problems
30(3)
3 Elements of Quantum Mechanics
33(30)
3.1 Introduction
33(1)
3.2 The One-Dimensional Schrodinger Equation
33(9)
3.3 The Three-Dimensional Schrodinger Equation
42(2)
3.4 Physical Interpretation of Psi and Its Normalization
44(3)
3.4.1 Density of States
46(1)
3.5 Expectation Values of Dynamical Quantities
47(2)
3.6 The Commutator
49(1)
3.7 Orthogonality of Wave Functions
50(1)
3.8 Spherically Symmetric Potentials
51(2)
3.9 The Two-Body Problem
53(6)
3.9.1 The Hydrogen-Like Atom Problem
54(5)
Problems
59(4)
4 Einstein Coefficients and Light Amplification
63(34)
4.1 Introduction
63(1)
4.2 The Einstein Coefficients
63(6)
4.2.1 Absorption and Emission Cross Sections
68(1)
4.3 Light Amplification
69(3)
4.4 The Threshold Condition
72(2)
4.5 Line Broadening Mechanisms
74(7)
4.5.1 Natural Broadening
75(2)
4.5.2 Collision Broadening
77(2)
4.5.3 Doppler Broadening
79(2)
4.6 Saturation Behavior of Homogeneously and Inhomogeneously Broadened Transitions
81(3)
4.7 Quantum Theory for the Evaluation of the Transition Rates and Einstein Coefficients
84(7)
4.7.1 Interaction with Radiation Having a Broad Spectrum
87(4)
4.7.2 Interaction of a Near-Monochromatic Wave with an Atom Having a Broad Frequency Response
91(1)
4.8 More Accurate Solution for the Two-Level System
91(4)
Problems
95(2)
5 Laser Rate Equations
97(24)
5.1 Introduction
97(1)
5.2 The Two-Level System
98(3)
5.3 The Three-Level Laser System
101(4)
5.4 The Four-Level Laser System
105(5)
5.5 Variation of Laser Power Around Threshold
110(7)
5.6 Optimum Output Coupling
117(2)
Problems
119(2)
6 Semiclassical Theory of the Laser
121(22)
6.1 Introduction
121(1)
6.2 Cavity Modes
121(7)
6.3 Polarization of the Cavity Medium
128(15)
6.3.1 First-Order Theory
131(5)
6.3.2 Higher Order Theory
136(7)
7 Optical Resonators
143(58)
7.1 Introduction
143(1)
7.2 Modes of a Rectangular Cavity and the Open Planar Resonator
144(7)
7.3 Spherical Mirror Resonators
151(2)
7.4 The Quality Factor
153(2)
7.5 The Ultimate Linewidth of a Laser
155(2)
7.6 Mode Selection
157(7)
7.6.1 Transverse Mode Selection
158(1)
7.6.2 Longitudinal Mode Selection
159(5)
7.7 Pulsed Operation of Lasers
164(18)
7.7.1 Q-Switching
164(7)
7.7.2 Techniques for Q-Switching
171(2)
7.7.3 Mode Locking
173(9)
7.8 Modes of Confocal Resonator System
182(8)
7.9 Modes of a General Spherical Resonator
190(3)
Problems
193(8)
8 Vector Spaces and Linear Operators: Dirac Notation
201(24)
8.1 Introduction
201(1)
8.2 The Bra and Ket Notation
201(1)
8.3 Linear Operators
202(2)
8.4 The Eigenvalue Equation
204(1)
8.5 Observables
205(1)
8.6 The Harmonic Oscillator Problem
206(9)
8.6.1 The Number Operator
211(1)
8.6.2 The Uncertainty Product
211(1)
8.6.3 The Coherent States
212(3)
8.7 Time Development of States
215(1)
8.8 The Density Operator
216(3)
8.9 The Schr6dinger and Heisenberg Pictures
219(3)
Problems
222(3)
9 Quantum Theory of Interaction of Radiation Field with Matter
225(38)
9.1 Introduction
225(1)
9.2 Quantization of the Electromagnetic Field
225(9)
9.3 The Eigenkets of the Hamiltonian
234(5)
9.4 The Coherent States
239(3)
9.5 Squeezed States of Light
242(4)
9.6 Transition Rates
246(5)
9.7 The Phase Operator
251(3)
9.8 Photons Incident on a Beam Splitter
254(5)
9.8.1 Single-Photon Incident on a Beam Splitter
255(3)
9.8.2 Moving Mirror in One Arm
258(1)
Problems
259(4)
10 Properties of Lasers
263(14)
10.1 Introduction
263(1)
10.2 Laser Beam Characteristics
263(6)
10.3 Coherence Properties of Laser Light
269(8)
10.3.1 Temporal Coherence
269(2)
10.3.2 Spatial Coherence
271(6)
11 Some Laser Systems
277(14)
11.1 Introduction
277(1)
11.2 Ruby Lasers
277(3)
11.3 Neodymium-Based Lasers
280(3)
11.3.1 Nd: YAG Laser
281(1)
11.3.2 Nd: Glass Laser
282(1)
11.4 Titanium Sapphire Laser
283(1)
11.5 The He-Ne Laser
283(2)
11.6 The Argon Ion Laser
285(1)
11.7 The CO2 Laser
286(2)
11.8 Dye Lasers
288(1)
Problems
289(2)
12 Doped Fiber Amplifiers and Lasers
291(32)
12.1 Introduction
291(1)
12.2 The Fiber Laser
291(4)
12.3 Basic Equations for Amplification in Erbium-Doped Fiber
295(9)
12.3.1 Gaussian Approximation
300(1)
12.3.2 Gaussian Envelope Approximation
301(1)
12.3.3 Solutions Under Steady State
302(2)
12.4 Fiber Lasers
304(7)
12.4.1 Minimum Required Doped Fiber Length
305(1)
12.4.2 Threshold
306(1)
12.4.3 Laser Output Power
307(4)
12.4.4 Slope Efficiency
311(1)
12.5 Erbium-Doped Fiber Amplifier
311(3)
12.5.1 Transparency Power
313(1)
12.6 Mode Locking in Fiber Lasers
314(6)
12.6.1 Non-linear Polarization Rotation
315(2)
12.6.2 Mode Locking Using Non-linear Polarization Rotation
317(2)
12.6.3 Semiconductor Saturable Absorbers
319(1)
Problems
320(3)
13 Semiconductor Lasers
323(40)
13.1 Introduction
323(1)
13.2 Some Basics of Semiconductors
323(4)
13.2.1 E Versus k
324(3)
13.3 Optical Gain in Semiconductors
327(9)
13.3.1 Density of States
327(1)
13.3.2 Probability of Occupancy of States
328(1)
13.3.3 Interaction with Light
329(2)
13.3.4 Joint Density of States
331(2)
13.3.5 Absorption and Emission Rates
333(1)
13.3.6 Light Amplification
334(2)
13.4 Gain Coefficient
336(13)
13.4.1 Electron-Hole Population and Quasi-Fermi Levels
340(3)
13.4.2 Gain in a Forward-Biased p-n Junction
343(2)
13.4.3 Laser Oscillation
345(1)
13.4.4 Heterostructure Lasers
346(3)
13.5 Quantum Well Lasers
349(7)
13.5.1 Joint Density of States
353(3)
13.6 Materials
356(1)
13.7 Laser Diode Characteristics
357(3)
13.8 Vertical Cavity Surface-Emitting Lasers (VCSELs)
360(2)
Problems
362(1)
14 Optical Parametric Oscillators
363(26)
14.1 Introduction
363(1)
14.2 Optical Non-linearity
363(6)
14.3 Parametric Amplification
369(4)
14.4 Singly Resonant Oscillator
373(2)
14.5 Doubly Resonant Oscillator
375(3)
14.6 Frequency Tuning
378(1)
14.7 Phase Matching
378(5)
Problems
383(6)
Part II: Some Important Applications of Lasers
15 Spatial Frequency Filtering and Holography
389(14)
15.1 Introduction
389(1)
15.2 Spatial Frequency Filtering
389(6)
15.3 Holography
395(5)
Problems
400(3)
16 Laser-Induced Fusion
403(14)
16.1 Introduction
403(1)
16.2 The Fusion Process
403(2)
16.3 The Laser Energy Requirements
405(3)
16.4 The Laser-Induced Fusion Reactor
408(9)
17 Light Wave Communications
417(28)
17.1 Introduction
417(1)
17.2 Carrier Wave Communication
417(9)
17.2.1 Analog Modulation
418(3)
17.2.2 Digital Modulation
421(5)
17.3 Optical Fibers in Communication
426(1)
17.4 The Optical Fiber
427(1)
17.5 Why Glass Fibers?
428(1)
17.6 Attenuation of Optical Fibers
429(3)
17.7 Numerical Aperture of the Fiber
432(1)
17.8 Multimode and Single-Mode Fibers
433(1)
17.9 Single-Mode Fiber
434(2)
17.9.1 Spot Size of the Fundamental Mode
435(1)
17.10 Pulse Dispersion in Optical Fibers
436(5)
17.10.1 Dispersion in Multimode Fibers
436(2)
17.10.2 Material Dispersion
438(1)
17.10.3 Dispersion and Bit Rate
438(1)
17.10.4 Dispersion in Single-Mode Fibers
439(2)
17.10.5 Dispersion and Maximum Bit Rate in Single-Mode Fibers
441(1)
Problems
441(4)
18 Lasers in Science
445(26)
18.1 Introduction
445(1)
18.2 Second-Harmonic Generation
445(5)
18.3 Stimulated Raman Emission
450(6)
18.4 Intensity-Dependent Refractive Index
456(2)
18.5 Lasers in Chemistry
458(1)
18.6 Lasers and Ether Drift
459(1)
18.7 Lasers and Gravitational Waves
460(1)
18.8 Rotation of the Earth
461(2)
18.9 Photon Statistics
463(2)
18.10 Lasers in Isotope Separation
465(4)
18.10.1 Separation Using Radiation Pressure
466(1)
18.10.2 Separation by Selective Photoionization or Photodissociation
467(1)
18.10.3 Photochemical Separation
468(1)
Problems
469(2)
19 Lasers in Industry
471(38)
19.1 Introduction
471(2)
19.2 Applications in Material Processing
473(6)
19.2.1 Laser Welding
473(2)
19.2.2 Hole Drilling
475(1)
19.2.3 Laser Cutting
476(3)
19.2.4 Other Applications
479(1)
19.3 Laser Tracking
479(4)
19.4 Lidar
483(2)
19.5 Lasers in Medicine
485(1)
19.6 Precision Length Measurement
486(1)
19.7 Laser Interferometry and Speckle Metrology
487(14)
19.7.1 Homodyne and Heterodyne Interferometry
488(3)
19.7.2 Holographic Interferometry
491(2)
19.7.3 Laser Interferometry Lithography
493(1)
19.7.4 Speckle Metrology
494(7)
19.8 Velocity Measurement
501(5)
19.8.1 Lasers in Information Storage
502(3)
19.8.2 Bar Code Scanner
505(1)
Problems
506(3)
The Nobel Lectures
509(84)
Production of coherent radiation by atoms and molecules
511(30)
Charles H. Townes
Quantum electronics
541(8)
A.M. Prochorov
Semiconductor lasers
549(18)
Nikolai G. Basov
Passion for Precision
567(26)
Theodor W. Hansch
Appendix 593(40)
A Solution for the Harmonic Oscillator Equation
593(4)
B The Solution of the Radial Part of the Schrodinger Equation
597(6)
C The Fourier Transform
603(10)
D Planck's Law
613(4)
E The Density of States
617(4)
F Fourier Transforming Property of a Lens
621(4)
G The Natural Lineshape Function
625(4)
H Nonlinear polarization in optical fibers
629(4)
References and Suggested Reading 633(6)
Index 639
K. Thyagarajan has been working in the general area of Photonics and in particular in Fiber 2 Optics since 1973 and has published more than 125 research papers in international journals and coauthored seven books with Professor Ajoy Ghatak. He has been teaching courses related to Lasers, Fiber Optics, Quantum Electronics, Optical Electronics, Electromagnetics since the past thirty years. Thyagarajan was elected Fellow of the Optical Society of America in 2005, was honored in 2003 with the title Officier dans lordre des Palmes Academiques by the French Government and was awarded the "Fiber Optic Person of the Year 1997 award (jointly) by Lucent Technologies- Finolex and Voice and Data. He was a consultant to Tejas Networks India Pvt. Ltd., Bangalore and has held visiting positions in Thomson-CSF, France and University of Florida, Gainesville, USA.

Ajoy Ghatak has recently retired as Professor of Physics from IIT Delhi. He obtained his MSc from Delhi University and PhD fromCornell University. His research areas are Fiber Optics and Quantum Mechanics. He has several books in these areas and some of them have been translated into foreign languages. The first edition of OPTICS has been translated into Chinese and Persian. Professor Ghatak is a recipient of several awards including the 2008 SPIE Educator Award in recognition of his unparalleled global contributions to the field of fiber optics research, and his tireless dedication to optics education worldwide and throughout the developing world in particular. He has also received the 2003 Optical Society of America Esther Hoffman Beller award in recognition of his outstanding contributions to optical science and engineering education. Furthermore, he is a recipient of the 1979 CSIR S S Bhatnagar award, the 1990 UGC Meghnad Saha award, the 2003 International Commission for Optics Galileo Galilei award and the 2007 Lifetime Achievement Award of the Optical Society of India.