Atjaunināt sīkdatņu piekrišanu

E-grāmata: Lattice of Subquasivarieties of a Locally Finite Quasivariety

  • Formāts: EPUB+DRM
  • Sērija : CMS Books in Mathematics
  • Izdošanas datums: 28-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319782355
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : CMS Books in Mathematics
  • Izdošanas datums: 28-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319782355
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book discusses the ways in which the algebras in a locally finite quasivariety determine its lattice of subquasivarieties.  The book starts with a clear and comprehensive presentation of the basic structure theory of quasivariety lattices, and then develops new methods and algorithms for their analysis.  Particular attention is paid to the role of quasicritical algebras.  The methods are illustrated by applying them to quasivarieties of abelian groups, modular lattices, unary algebras and pure relational structures.  An appendix gives an overview of the theory of quasivarieties.  Extensive references to the literature are provided throughout.

Chapter 1 Introduction and Background
1(10)
1.1 Introduction
1(3)
1.2 Background
4(4)
1.3 Review of Complete Lattices
8(3)
Chapter 2 Structure of Lattices of Subquasivarieties
11(26)
2.1 Completely Join Irreducible Quasivarieties
11(7)
2.2 Reflections
18(5)
2.3 Completely Meet Irreducible Quasivarieties
23(3)
2.4 Quasivarieties of Modular Lattices
26(6)
2.5 Quasivarieties of Abelian Groups
32(1)
2.6 Quasivarieties of Infinite Type
33(4)
Chapter 3 Omission and Bases for Quasivarieties
37(12)
3.1 Characterizing Quasivarieties by Excluded Subalgebras
37(6)
3.2 Pseudoquasivarieties
43(6)
Chapter 4 Analyzing Lq(K)
49(16)
4.1 Algorithms
49(3)
4.2 Fermentability
52(4)
4.3 Equational Quasivarieties
56(1)
4.4 The Atoms of Lq(K)
57(2)
4.5 The Variety Z
59(4)
4.6 Synopsis
63(2)
Chapter 5 Unary Algebras with 2-Element Range
65(38)
5.1 The Variety Generated by M
65(3)
5.2 Illustrating the Algorithms: 1-Generated Algebras
68(13)
5.3 Illustrating the Algorithms: 2-Generated Algebras
81(9)
5.4 Uncountably Many Subquasivarieties
90(8)
5.5 Q-Universality of M
98(5)
Chapter 6 1-Unary Algebras
103(18)
6.1 1-Unary Algebras With and Without 0
103(11)
6.2 Some Quasivarieties N0r,s
114(3)
6.3 Some Quasivarieties Nr,s
117(4)
Chapter 7 Pure Unary Relational Structures
121(12)
7.1 Pure Unary Relational Quasivarieties
121(1)
7.2 Quasicritical Lemmas
122(2)
7.3 One Unary Relation
124(1)
7.4 Two Unary Relations
125(5)
7.5 Adding a Constant
130(3)
Chapter 8 Problems
133(2)
Appendix A Properties of Lattices of Subquasivarieties
135(10)
A.1 Representations of Quasivariety Lattices
135(1)
A.2 Representations of Quasivariety Lattices
135(1)
A.3 Basic Consequences of the Representations
136(2)
A.4 Equaclosure Operators
138(2)
A.5 Examples of Quasivariety Lattices
140(1)
A.6 The Quasivariety Generated by a Quasiprimal Algebra
140(3)
A.7 Miscellaneous
143(2)
Bibliography 145(10)
Symbol Index 155(2)
Author Index 157(2)
Subject Index 159
Jennifer Hyndman was a founding faculty member of the University of Northern British Columbia.  There she honed her passion for teaching that led to her winning the Canadian Mathematical Society Excellence in Teaching Award. When not engrossed in research on natural duality theory or quasi-equational theory she can be found in a dance studio learning jazz, modern, and ballet choreography.J. B. Nation is professor emeritus at the University of Hawaii.  His research interests include lattice theory, universal algebra, coding theory and bio-informatics.  He enjoys running, refereeing soccer, and playing jazz flugelhorn.