Atjaunināt sīkdatņu piekrišanu

E-grāmata: Law and Policy for the Quantum Age

(University of California, Berkeley),
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Jan-2022
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108879750
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 49,96 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 06-Jan-2022
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108879750
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Law and Policy for the Quantum Age is for readers interested in the political and business strategies underlying quantum sensing, computing, and communication. This work explains how these quantum technologies work, future national defense and legal landscapes for nations interested in strategic advantage, and paths to profit for companies.

It is often said that quantum technologies are poised to change the world as we know it, but cutting through the hype, what will quantum technologies actually mean for countries and their citizens? In Law and Policy for the Quantum Age, Chris Jay Hoofnagle and Simson L. Garfinkel explain the genesis of quantum information science (QIS) and the resulting quantum technologies that are most exciting: quantum sensing, computing, and communication. This groundbreaking, timely text explains how quantum technologies work, how countries will likely employ QIS for future national defense and what the legal landscapes will be for these nations, and how companies might (or might not) profit from the technology. Hoofnagle and Garfinkel argue that the consequences of QIS are so profound that we must begin planning for them today. This title is available as Open Access on Cambridge Core.

Recenzijas

'This book is broad, deep, and accessible - a rare combination in a single volume. This book opened my eyes to the complex scenarios that make up the future, and then gave me frameworks for understanding them. Highly recommended!' Adam Shostack, author of Threat Modeling: Designing for Security, and the co-author of The New School of Information Security 'Revolutionary technology usually bursts on the scene and races ahead of public comprehension and policy, which struggle to keep up. Quantum computing is different - we have time to think, because many of the theoretical promises are understood but most are still years away. Hoofnagle and Garfinkel provide a valuable contribution to that opportunity to think, by giving the reader a comprehensive look at both the technology and its policy opportunities and threats.' Bill Silver 'Law and Policy for the Quantum Age is required reading for those who really want to understand why quantum technologies are likely to transform our world in a very radical way. While there are many other books that explain the physics and engineering of quantum information systems, Law and Policy for the Quantum Age is the only book currently available that clearly elucidates the huge impact that these quantum devices will have on industrial and government policy, and why we need to seriously consider these implications today.' Marco Lanzagorta ' a gracefully written and deeply informative look at the commercial and policy prospects of quantum computing ' Stewart Baker, former Assistant Secretary for Policy, United States Department of Homeland Security; former General Counsel, National Security Agency 'With their book, Hoofnagle and Garfinkel deliver an exceptional performance by making the material accessible, offering a realistic view of what is (and what is not) coming. In doing so, they identify at exactly the right time the policy questions that politics and society must now start thinking about.' Axel Arnbak, Het Financieele Dagblad 'Recommended.' M. C. Ogilvie, Choice

Papildus informācija

The Quantum Age cuts through the hype to demystify quantum technologies, their development paths, and the policy issues they raise.
List of Figures
xi
List of Tables
xv
Preface xvii
Acknowledgments xix
Intro 1(22)
Part 01 Quantum Technologies
23(280)
1 Small Phenomena, Big Implications
25(6)
1.1 Uncertainty
25(1)
1.2 Entanglement
26(1)
1.3 Superposition
27(2)
1.4 Conclusion
29(2)
2 Quantum Sensing and Metrology
31(46)
2.1 First-Generation Quantum Sensing
36(3)
2.2 Modern Quantum Sensing Approaches
39(8)
2.3 Quantum Sensing Applications
47(27)
2.3.1 Measuring Time
47(4)
2.3.2 Sensing Location
51(14)
2.3.3 Sensing Gravitational Fields
65(3)
2.3.4 Quantum Illumination
68(3)
2.3.5 Quantum Radar
71(3)
2.4 From SIGINT to MASINT
74(1)
2.5 Quantum Sensing: Conclusion
75(2)
3 Understanding Computation
77(44)
3.1 Mechanical Calculation
78(2)
3.2 The Birth of Machine Computation
80(3)
3.2.1 Combinatorial Problems
80(2)
3.2.2 Numerical Analysis
82(1)
3.3 Numeric Coding
83(8)
3.3.1 Encoding Digital Information
86(4)
3.3.2 Digital Computation
90(1)
3.4 Computing, Computability and Turing Complete
91(7)
3.4.1 Introducing The Halting Problem
94(2)
3.4.2 The Halting Problem Cannot Be Solved
96(1)
3.4.3 Using The Halting Problem
97(1)
3.5 Moore's Law, Exponential Growth, and Complexity Theory
98(20)
3.5.1 Software Speedups
102(4)
3.5.2 Polynomial Complexity (P)
106(1)
3.5.3 Nondeterminism
107(3)
3.5.4 NP-Complete and NP-Hard
110(5)
3.5.5 NP-Complete Problems Are Solvable!
115(1)
3.5.6 BQP, BPP, and Beyond
116(2)
3.6 Computing Today
118(1)
3.7 Conclusion
119(2)
4 The Birth of Quantum Computing
121(52)
4.1 Why Quantum Computers?
122(2)
4.1.1 Richard Feynman and Quantum Computing
122(2)
4.2 Reversibility
124(12)
4.2.1 The Arrow of Time
125(1)
4.2.2 The Second Law of Thermodynamics
126(4)
4.2.3 Reversible Computation
130(4)
4.2.4 The Landauer Limit
134(2)
4.3 Cellular Automata and Conway's Life
136(9)
4.3.1 Computing with CPUs, GPUs, and CA(s)
136(4)
4.3.2 Life (The Game)
140(5)
4.4 Digital Physics
145(6)
4.4.1 Edward Fredkin and Project MAC
146(5)
4.5 Reversible Computing and Supercomputing
151(8)
4.5.1 A Most Successful Term Paper
151(2)
4.5.2 Reversible Computing Today
153(4)
4.5.3 Defense Money
157(2)
4.6 The Conference on The Physics of Computation (1981)
159(3)
4.7 Russia and Quantum Computing
162(2)
4.8 Aftermath: The Quantum Computing Baby
164(9)
4.8.1 Growing Academic Interest
164(4)
4.8.2 The First Quantum Computers
168(1)
4.8.3 Coda
169(4)
5 Quantum Computing Applications
173(56)
5.1 Simulating Physical Chemistry
174(14)
5.1.1 Nitrogen Fixation, without Simulation
181(3)
5.1.2 Modeling Chemical Reactions
184(4)
5.2 Quantum Factoring (Shor's Algorithm)
188(22)
5.2.1 An Introduction to Cryptography
190(6)
5.2.2 Forty Years of Public Key Cryptography
196(3)
5.2.3 Cracking Public Key with Shor's Algorithm
199(4)
5.2.4 Evaluating The Quantum Computer Threat to Public Key Cryptography
203(5)
5.2.5 Post-Quantum Cryptography
208(2)
5.3 Quantum Search (Graver's Algorithm)
210(16)
5.3.1 Symmetric Ciphers: DES and AES
210(4)
5.3.2 Brute-Force Key Search Attacks
214(4)
5.3.3 Cracking AES-128 with Graver's Algorithm
218(5)
5.3.4 Graver's Algorithm Today
223(3)
5.4 Conclusion
226(3)
6 Quantum Computing Today
229(28)
6.1 How to Build a Quantum Computer
231(4)
6.2 The Quantum Computer Landscape
235(7)
6.2.1 Comparing Quantum Media
236(1)
6.2.2 Five Kinds of Quantum Computers
237(5)
6.3 Skeptics Present Quantum Computing's Challenges
242(11)
6.3.1 Scientific Challenges
243(2)
6.3.2 Engineering Challenges
245(3)
6.3.3 Validation Challenges
248(1)
6.3.4 Ecosystem Challenges
248(1)
6.3.5 Quantum Supremacy and Quantum Advantage
249(4)
6.4 The Outlook for Quantum Computing
253(4)
7 Quantum Communications
257(46)
7.1 Information-Theoretic Security
260(4)
7.1.1 An Easy Math Problem
260(1)
7.1.2 A Hard Math Problem
261(1)
7.1.3 An Impossible Math Problem
262(2)
7.2 Golden Ages: SIGINT and Encryption Adoption
264(7)
7.2.1 The Golden Age of SIGINT
264(6)
7.2.2 The Golden Age of Encryption
270(1)
7.3 Quantum Random Number Generation (QRNG)
271(5)
7.4 Quantum Key Distribution
276(17)
7.4.1 BB84
277(2)
7.4.2 How QKD Works
279(4)
7.4.3 Why QKD Is Secure
283(3)
7.4.4 QKD Gains Momentum
286(3)
7.4.5 QKD Commercialized, Miniaturized
289(4)
7.5 Quantum Internet
293(7)
7.6 Conclusion
300(3)
Part 10 Shaping the Quantum Future
303(166)
8 Quantum Technologies and Possible Futures
305(70)
8.1 Do Quantum Artifacts Have Politics?
305(4)
8.1.1 Threat Modeling
307(1)
8.1.2 Future Quantum Technology Scenarios
308(1)
8.2 Scenario 1: Government Superior and Dominant
309(38)
8.2.1 Winner Take All
310(5)
8.2.2 Strategic Surprise: Cryptanalysis
315(7)
8.2.3 Forged Signatures and Our Legal Realities
322(3)
8.2.4 Attacks on Passwords and Other Authentication Systems
325(6)
8.2.5 Strategic Surprise: Nuclear Weapons
331(1)
8.2.6 Quantum Strategic Surprise: Chemical, Biological, and Genetic Weapons
332(3)
8.2.7 Strategic Surprise: Remote Sensing
335(4)
8.2.8 Quantum Strategic Surprise: QKD and Quantum Internet
339(2)
8.2.9 Quantum Strategic Surprise: Secrecy and Leakage
341(3)
8.2.10 Countermeasures in a Government-Dominant Scenario: Disruption, Denial, Degradation, Destruction, and Deception
344(3)
8.3 Scenario 2: Public/Private Utopia
347(14)
8.3.1 How Quantum Technologies Could Change Governance and Law
350(5)
8.3.2 Implications for Human Primacy
355(6)
8.4 Scenario 3: Public/Private, East/West Bloc
361(5)
8.5 Scenario 4: Quantum winter
366(6)
8.6 Conclusion
372(3)
9 A Policy Landscape
375(82)
9.1 Quantum Technology's Policy Impact
376(4)
9.1.1 Game-Changers: Code-Breaking and Possibly Machine Learning
378(1)
9.1.2 Quantum Technology Dominance
379(1)
9.2 Industrial Policy
380(21)
9.2.1 National Quantum Investments outside The US
380(3)
9.2.2 US Quantum Technology Industrial Policy
383(2)
9.2.3 Industrial Policy: Options and Risks
385(7)
9.2.4 Innovation and The Taxpayer
392(5)
9.2.5 The Risk of Choosing Poorly
397(4)
9.3 Education Policy
401(10)
9.3.1 Graduate Training in QIS
401(6)
9.3.2 The Human Capital Challenge
407(1)
9.3.3 Faculty Research Incentives
408(3)
9.4 National Security and Quantum Technologies
411(15)
9.4.1 Export Controls
413(9)
9.4.2 Quantum Technology and Space Law
422(2)
9.4.3 Quantum Technology and Cybersecurity
424(2)
9.5 Quantum Technology and Privacy
426(14)
9.5.1 Secrets and Their Time Value
427(1)
9.5.2 Regulation of Decryption
428(5)
9.5.3 Challenges of Government Power
433(4)
9.5.4 The European Approach to Privacy Rights
437(3)
9.6 Quantum Prediction
440(6)
9.6.1 Product development
441(2)
9.6.2 Fairness
443(3)
9.7 Measuring Quantum's Research Output
446(8)
9.7.1 Academic Publications
446(5)
9.7.2 Quantum Technology's Patent Output
451(3)
9.8 Conclusion
454(3)
10 The Quantum Age: Conclusions
457(12)
10.1 Quantum Computing Winter Is a Probable Scenario for 2030
458(2)
10.1.1 Public/Private Scenario
459(1)
10.2 Assessing the Next Decade of Quantum Technologies
460(4)
10.2.1 Prospects for Quantum Sensing
460(1)
10.2.2 Prospects for Quantum Computing
461(1)
10.2.3 Prospects for Quantum Communications
462(2)
10.3 Law and Policy Priorities for the Quantum Age
464(5)
Appendices
469(2)
A Introduction to the Quantum Realm
471(12)
A.1 The Quantum World: A Brief Introduction
472(1)
A.2 Terminology, Size, and Frequency
473(10)
A.2.1 The Atom
474(1)
A.2.2 Quantum Sizes
475(2)
A.2.3 Light
477(2)
A.2.4 Quantum Speeds
479(4)
B Introduction to Quantum Effects
483(42)
B.1 Wave Mechanics
483(18)
B.1.1 Quantum Swirls
484(4)
B.1.2 Light: Newton Thought It Was a Particle
488(1)
B.1.3 Light: It Acts Like a Wave
488(4)
B.1.4 Light: How Can It Possibly Be a Wave?
492(9)
B.2 Quantum Effects 1: Uncertainty
501(4)
B.3 Quantum Effects 2: Polarization
505(8)
B.3.1 Six Experiments with Quantum Polarization
509(4)
B.4 Quantum Effects 3: Entanglement
513(4)
B.5 Quantum Effects 4: Superposition
517(5)
B.6 The Cat State
522(3)
Bibliography 525(42)
Index 567(10)
Colophon 577
Chris Jay Hoofnagle is professor of law in residence at the University of California, Berkeley and affiliated faculty with the Simons Institute for the Theory of Computing. He is an elected member of the American Law Institute, and author of Federal Trade Commission Privacy Law and Policy (Cambridge University Press 2016). Hoofnagle is of counsel to Gunderson Dettmer Stough Villeneuve Franklin & Hachigian, LLP, and serves on boards for Constella Intelligence and Palantir Technologies. Simson L. Garfinkel is a pioneer in digital forensics, with a career in technology spanning starting a local internet service provider in 1995 to academia and government service. Garfinkel holds a Ph.D. in computer science from the Massachusetts Institute of Technology, was a tenured professor of computer science at the Naval Postgraduate School, and now is a Senior Data Scientist at the U.S. Department of Homeland Security, a part-time faculty member at the George Washington University in Washington, DC, and a member of the Association for Computing Machinery's US Technology Policy Committee (ACM USTPC). He has authored and edited 16 books, over 100 scholarly articles, and is a fellow of both the ACM and the Institute of Electrical and Electronics Engineers (IEEE). This book is written in Simson Garfinkel's personal capacity and does not reflect the views or policy of the U.S. Government, the U.S. Department of Homeland Security, the U.S. Department of Commerce, or the U.S. Census Bureau.