Atjaunināt sīkdatņu piekrišanu

E-grāmata: Learner Interactions in Massive Private Online Courses

  • Formāts: 108 pages
  • Izdošanas datums: 11-Aug-2022
  • Izdevniecība: Routledge
  • Valoda: eng
  • ISBN-13: 9781000755824
  • Formāts - EPUB+DRM
  • Cena: 23,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 108 pages
  • Izdošanas datums: 11-Aug-2022
  • Izdevniecība: Routledge
  • Valoda: eng
  • ISBN-13: 9781000755824

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

By employing learning analytics methodology and big data in Learning Management Systems (LMSs), this volume conducts data-driven research to identify and compare learner interaction patterns in Massive Private Online Courses (MPOCs).

By employing learning analytics methodology and big data in Learning Management Systems (LMSs), this volume conducts data-driven research to identify and compare learner interaction patterns in Massive Private Online Courses (MPOCs).

The uncertainties about the temporal and sequential patterns of online interaction, and the lack of specific knowledge and methods to investigate details of LMSs' dynamic interaction traces have affected the improvement of online learning effectiveness. While most research focuses on Massive Open Online Courses (MOOCs), little is investigating the learners’ interaction behaviors in MPOCs. This book attempts to fill in the gaps by including research in the past decades, big data in education presenting micro-level interaction traces, analytics-based learner interaction in massive private open courses, and a case study.

Aiming to bring greater efficiency and deeper engagement to individual learners, instructors, and administrators, the title provides a reference to those who need to evaluate their learning and teaching strategies in online learning. It will be particularly useful to students and researchers in the field of Education.

This research was funded by Liaoning Social Science Planning Fund Program in China, grant number [ L21BSH002].



By employing learning analytics methodology and big data in Learning Management Systems (LMSs), this volume conducts data-driven research to identify and compare learner interaction patterns in Massive Private Online Courses (MPOCs).

1. Online Learning Needs Learning Analytics
2. Traditional Learner Interaction Research in Online Learning
3. LMS Log Data Presenting Interaction Traces
4. Interaction Research with Learning Analytics
5. Massive Private Open Courses
6. Research Design of a MPOCs Case
7. Results and Discussion based on the Case
8. Reflection and Consideration
Di Sun is an associate professor of educational evaluation at Dalian University of Technology. She received her MS and Ph.D. degrees majoring in Educational Evaluation from Syracuse University. Her research interests include Learning Analytics, Educational Data Mining, and Educational Evaluation.

Gang Cheng is an associate professor at The Open University of China, where he directs the Department of Learning Resource and Digital Library. His research interests include Resource and environment of digital learning, Learner support, and Learning Analytics.