Atjaunināt sīkdatņu piekrišanu

Learning and Intelligent Optimization: 15th International Conference, LION 15, Athens, Greece, June 2025, 2021, Revised Selected Papers 1st ed. 2021 [Mīkstie vāki]

  • Formāts: Paperback / softback, 410 pages, height x width: 235x155 mm, weight: 646 g, 84 Illustrations, color; 31 Illustrations, black and white; XIII, 410 p. 115 illus., 84 illus. in color., 1 Paperback / softback
  • Sērija : Theoretical Computer Science and General Issues 12931
  • Izdošanas datums: 09-Dec-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030921204
  • ISBN-13: 9783030921200
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 73,68 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 86,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 410 pages, height x width: 235x155 mm, weight: 646 g, 84 Illustrations, color; 31 Illustrations, black and white; XIII, 410 p. 115 illus., 84 illus. in color., 1 Paperback / softback
  • Sērija : Theoretical Computer Science and General Issues 12931
  • Izdošanas datums: 09-Dec-2021
  • Izdevniecība: Springer Nature Switzerland AG
  • ISBN-10: 3030921204
  • ISBN-13: 9783030921200
Citas grāmatas par šo tēmu:
This book constitutes the refereed post-conference proceedings on Learning and Intelligent Optimization, LION 15, held in Athens, Greece, in June 2021.





The 30 full papers presented have been carefully reviewed and selected from 35 submissions. LION deals with designing and engineering ways of "learning" about the performance of different techniques, and ways of using past experience about the algorithm behavior to improve performance in the future. Intelligent learning schemes for mining the knowledge obtained online or offline can improve the algorithm design process and simplify the applications of high-performance optimization methods. Combinations of different algorithms can further improve the robustness and performance of the individual components.