Atjaunināt sīkdatņu piekrišanu

E-grāmata: Lectures on Elliptic and Parabolic Equations in Sobolev Spaces

  • Formāts: 357 pages
  • Sērija : Graduate Studies in Mathematics 96
  • Izdošanas datums: 02-Jan-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470421212
  • Formāts - PDF+DRM
  • Cena: 108,57 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Lectures on Elliptic and Parabolic Equations in Sobolev Spaces
  • Formāts: 357 pages
  • Sērija : Graduate Studies in Mathematics 96
  • Izdošanas datums: 02-Jan-2015
  • Izdevniecība: American Mathematical Society
  • ISBN-13: 9781470421212

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book concentrates on the basic facts and ideas of the modern theory of linear elliptic and parabolic equations in Sobolev spaces. The main areas covered in this book are the first boundary-value problem for elliptic equations and the Cauchy problem for parabolic equations. In addition, other boundary-value problems such as the Neumann or oblique derivative problems are briefly covered. As is natural for a textbook, the main emphasis is on organizing well-known ideas in a self-contained exposition. Among the topics included that are not usually covered in a textbook are a relatively recent development concerning equations with $\mathsf{VMO}$ coefficients and the study of parabolic equations with coefficients measurable only with respect to the time variable. There are numerous exercises which help the reader better understand the material. After going through the book, the reader will have a good understanding of results available in the modern theory of partial differential equations and the technique used to obtain them. Prerequisites are basics of measure theory, the theory of $L_p$ spaces, and the Fourier transform.

Recenzijas

This book is certain to become a source of inspiration for every researcher in nonlinear analysis. [ The book] is beautifully written and well organized, and I strongly recommend this book to anyone seeking a stylish, balanced, up-to-date survey of this central area of the modern nonlinear analysis."" - Mathematical Reviews

Chapters
Chapter
1. Second-order elliptic equations in $W^{2}_{2}(\mathbb {R}^{d})$
Chapter
2. Second-order parabolic equations in $W^{1,k}_{2}(\mathbb
{R}^{d+1})$
Chapter
3. Some tools from real analysis
Chapter
4. Basic $\mathcal {L}_{p}$-estimates for parabolic and elliptic
equations
Chapter
5. Parabolic and elliptic equations in $W^{1,k}_{p}$ and $W^{k}_{p}$
Chapter
6. Equations with VMO coefficients
Chapter
7. Parabolic equations with VMO coefficients in spaces with mixed
norms
Chapter
8. Second-order elliptic equations in $W^{2}_{p}(\Omega )$
Chapter
9. Second-order elliptic equations in $W^{k}_{p}(\Omega )$
Chapter
10. Sobolev embedding theorems for $W^{k}_{p}(\Omega )$
Chapter
11. Second-order elliptic equations $Lu-\lambda u=f$ with $\lambda $
small
Chapter
12. Fourier transform and elliptic operators
Chapter
13. Elliptic operators and the spaces $H^{\gamma }_{p}$
N. V. Krylov, University of Minnesota, Minneapolis, MN.