Atjaunināt sīkdatņu piekrišanu

Lectures on Formal and Rigid Geometry 2014 ed. [Mīkstie vāki]

  • Formāts: Paperback / softback, 254 pages, height x width: 235x155 mm, weight: 4044 g, VIII, 254 p., 1 Paperback / softback
  • Sērija : Lecture Notes in Mathematics 2105
  • Izdošanas datums: 04-Sep-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319044168
  • ISBN-13: 9783319044163
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 55,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 65,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 254 pages, height x width: 235x155 mm, weight: 4044 g, VIII, 254 p., 1 Paperback / softback
  • Sērija : Lecture Notes in Mathematics 2105
  • Izdošanas datums: 04-Sep-2014
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319044168
  • ISBN-13: 9783319044163
Citas grāmatas par šo tēmu:
The aim of this work is to offer a concise and self-contained 'lecture-style' introduction to the theory of classical rigid geometry established by John Tate, together with the formal algebraic geometry approach launched by Michel Raynaud. These Lectures are now viewed commonly as an ideal means of learning advanced rigid geometry, regardless of the reader's level of background. Despite its parsimonious style, the presentation illustrates a number of key facts even more extensively than any other previous work.

This Lecture Notes Volume is a revised and slightly expanded version of a preprint that appeared in 2005 at the University of Münster's Collaborative Research Center "Geometrical Structures in Mathematics".

Recenzijas

Its aim is to offer a rapid and mostly self-contained lecture-style introduction to the theory of classical rigid geometry established by Tate, together with the formal algebraic geometry approach set up by Raynaud. Furthermore, the volume provides enlightening examples of rigid spaces and points out analogies with and differences from the theory of schemes. The book is suitable for a first course on formal and rigid geometry, but it can be used equally well for personal study. (Alessandra Bertapelle, Mathematical Reviews, March, 2016)

All notions introduced are discussed thoroughly, proofs are lucid and elegant, and the hypotheses made and their relevance are clear throughout the text. The reader comes away from the text with a thorough understanding of the internal motivations of the theory of formal and rigid spaces. The bookis an extremely readable introduction to its subject, as well as to the techniques of modern geometry in general. (Jeroen Sijsling, zbMATH 1314.14002, 2015)

1 Introduction: Analytic Functions over non-Archimedean Fields
1(8)
Part I Classical Rigid Geometry
2 Tate Algebras
9(22)
2.1 Topology Induced from a Non-Archimedean Absolute Value
9(3)
2.2 Restricted Power Series
12(12)
2.3 Ideals in Tate Algebras
24(7)
3 Affinoid Algebras and Their Associated Spaces
31(34)
3.1 Affinoid Algebras
31(11)
3.2 Affinoid Spaces
42(3)
3.3 Affinoid Subdomains
45(20)
4 Affinoid Functions
65(28)
4.1 Germs of Affinoid Functions
65(4)
4.2 Locally Closed Immersions of Affinoid Spaces
69(13)
4.3 Tate's Acyclicity Theorem
82(11)
5 Towards the Notion of Rigid Spaces
93(24)
5.1 Grothendieck Topologies
93(6)
5.2 Sheaves
99(4)
5.3 Rigid Spaces
103(6)
5.4 The GAGA-Functor
109(8)
6 Coherent Sheaves on Rigid Spaces
117(34)
6.1 Coherent Modules
117(8)
6.2 Grothendieck Cohomology
125(4)
6.3 The Proper Mapping Theorem
129(4)
6.4 Proof of the Proper Mapping Theorem
133(18)
Part II Formal Geometry
7 Adic Rings and Their Associated Formal Schemes
151(24)
7.1 Adic Rings
151(7)
7.2 Formal Schemes
158(4)
7.3 Algebras of Topologically Finite Type
162(7)
7.4 Admissible Formal Schemes
169(6)
8 Raynaud's View on Rigid Spaces
175(40)
8.1 Coherent Modules
175(4)
8.2 Admissible Formal Blowing-Up
179(15)
8.3 Rig-Points in the Classical Rigid Setting
194(8)
8.4 Rigid Spaces in Terms of Formal Models
202(13)
9 More Advanced Stuff
215(14)
9.1 Relative Rigid Spaces
215(2)
9.2 An Example: Raynaud's Universal Tate Curve
217(3)
9.3 The Zariski--Riemann Space
220(3)
9.4 Further Results on Formal Models
223(6)
Appendix A Classical Valuation Theory 229(8)
Appendix B Completed Tensor Products 237(12)
References 249(2)
Index 251