Atjaunināt sīkdatņu piekrišanu

E-grāmata: Lectures on Functional Analysis and the Lebesgue Integral

  • Formāts: PDF+DRM
  • Sērija : Universitext
  • Izdošanas datums: 03-Jun-2016
  • Izdevniecība: Springer London Ltd
  • Valoda: eng
  • ISBN-13: 9781447168119
  • Formāts - PDF+DRM
  • Cena: 83,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Universitext
  • Izdošanas datums: 03-Jun-2016
  • Izdevniecība: Springer London Ltd
  • Valoda: eng
  • ISBN-13: 9781447168119

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This textbook, based on three series of lectures held by the author at the University of Strasbourg, presents functional analysis in a non-traditional way by generalizing elementary theorems of plane geometry to spaces of arbitrary dimension. This approach leads naturally to the basic notions and theorems. Most results are illustrated by the small p spaces. The Lebesgue integral, meanwhile, is treated via the direct approach of Frigyes Riesz, whose constructive definition of measurable functions leads to optimal, clear-cut versions of the classical theorems of Fubini-Tonelli and Radon-Nikodżm.

Lectures on Functional Analysis and the Lebesgue Integral presents the most important topics for students, with short, elegant proofs. The exposition style follows the Hungarian mathematical tradition of Paul Erds and others. The order of the first two parts, functional analysis and the Lebesgue integral, may be reversed. In the third and final part they arecombined to study various spaces of continuous and integrable functions. Several beautiful, but almost forgotten, classical theorems are also included.

Both undergraduate and graduate students in pure and applied mathematics, physics and engineering will find this textbook useful. Only basic topological notions and results are used and various simple but pertinent examples and exercises illustrate the usefulness and optimality of most theorems. Many of these examples are new or difficult to localize in the literature, and the original sources of most notions and results are indicated to help the reader understand the genesis and development of the field.

Recenzijas

This book is written in a clear and readable style . The author gathers a collection of exercises in each chapter and presents some hints and solutions to some of them at the end of the book, helping the readers to develop their knowledge. The book is indeed a comprehensive study of Lp-spaces, useful for graduate students in mathematics, physics and engineering. (Mohammad Sal Moslehian, zbMATH 1350.46002, 2017)

Part I Functional Analysis
1 Hilbert Spaces
3(52)
1.1 Definitions and Examples
3(8)
1.2 Orthogonality
11(5)
1.3 Separation of Convex Sets: Theorems of Riesz--Frechet and Kuhn--Tucker
16(8)
1.4 Orthonormal Bases
24(5)
1.5 Weak Convergence: Theorem of Choice
29(6)
1.6 Continuous and Compact Operators
35(4)
1.7 Hilbert's Spectral Theorem
39(6)
1.8 * The Complex Case
45(2)
1.9 Exercises
47(8)
2 Banach Spaces
55(64)
2.1 Separation of Convex Sets
57(8)
2.2 Theorems of Helly--Hahn--Banach and Taylor--Foguel
65(4)
2.3 The P Spaces and Their Duals
69(7)
2.4 Banach Spaces
76(3)
2.5 Weak Convergence: Helly--Banach--Steinhaus Theorem
79(8)
2.6 Reflexive Spaces: Theorem of Choice
87(4)
2.7 Reflexive Spaces: Geometrical Applications
91(5)
2.8 * Open Mappings and Closed Graphs
96(3)
2.9 * Continuous and Compact Operators
99(4)
2.10 * Fredholm-Riesz Theory
103(9)
2.11 * The Complex Case
112(1)
2.12 Exercises
113(6)
3 Locally Convex Spaces
119(32)
3.1 Families of Seminorms
120(3)
3.2 Separation and Extension Theorems
123(3)
3.3 Krein--Milman Theorem
126(4)
3.4 * Weak Topology. Farkas--Minkowski Lemma
130(5)
3.5 * Weak Star Topology: Theorems of Banach--Alaoglu and Goldstein
135(5)
3.6 * Reflexive Spaces: Theorems of Kakutani and Eberlein--Smulian
140(4)
3.7 * Topological Vector Spaces
144(2)
3.8 Exercises
146(5)
Part II The Lebesgue Integral
4 * Monotone Functions
151(18)
4.1 Continuity: Countable Sets
151(3)
4.2 Differentiability: Null Sets
154(3)
4.3 Jump Functions
157(4)
4.4 Proof of Lebesgue's Theorem
161(3)
4.5 Functions of Bounded Variation
164(1)
4.6 Exercises
165(4)
5 The Lebesgue Integral in R
169(28)
5.1 Step Functions
170(4)
5.2 Integrable Functions
174(3)
5.3 The Beppo Levi Theorem
177(4)
5.4 Theorems of Lebesgue, Fatou and Riesz-Fischer
181(6)
5.5 * Measurable Functions and Sets
187(7)
5.6 Exercises
194(3)
6 * Generalized Newton--Leibniz Formula
197(14)
6.1 Absolute Continuity
198(5)
6.2 Primitive Function
203(4)
6.3 Integration by Parts and Change of Variable
207(2)
6.4 Exercises
209(2)
7 Integrals on Measure Spaces
211(46)
7.1 Measures
211(6)
7.2 Integrals Associated with a Finite Measure
217(7)
7.3 Product Spaces: Theorems of Fubini and Tonelli
224(5)
7.4 Signed Measures: Hahn and Jordan Decompositions
229(6)
7.5 Lebesgue Decomposition
235(4)
7.6 The Radon-Nikodym Theorem
239(8)
7.7 * Local Measurability
247(4)
7.8 Exercises
251(6)
Part III Function Spaces
8 Spaces of Continuous Functions
257(48)
8.1 Weierstrass Approximation Theorems
260(5)
8.2 * The Stone--Weierstrass Theorem
265(3)
8.3 Compact Sets. The Arzela--Ascoli Theorem
268(2)
8.4 Divergence of Fourier Series
270(5)
8.5 Summability of Fourier Series. Fejer's Theorem
275(4)
8.6 * Korovkin's Theorems. Bernstein Polynomials
279(5)
8.7 * Theorems of Harsiladze--Lozinski, Nikolaev and Faber
284(5)
8.8 * Dual Space. Riesz Representation Theorem
289(10)
8.9 Weak Convergence
299(1)
8.10 Exercises
300(5)
9 Spaces of Integrable Functions
305(36)
9.1 LP Spaces, 1 ≤ p ≤ ∞
305(11)
9.2 * Compact Sets
316(4)
9.3 * Convolution
320(3)
9.4 Uniformly Convex Spaces
323(6)
9.5 Reflexivity
329(2)
9.6 Duals of LP Spaces
331(5)
9.7 Weak and Weak Star Convergence
336(3)
9.8 Exercises
339(2)
10 Almost Everywhere Convergence
341(22)
10.1 LP Spaces, 1 ≤ p ≤ ∞
341(3)
10.2 LP Spaces, 0 < p ≤ 1
344(7)
10.3 LO Spaces
351(4)
10.4 Convergence in Measure
355(8)
Hints and Solutions to Some Exercises 363(12)
Teaching Remarks 375(2)
Bibliography 377(18)
Subject Index 395(6)
Name Index 401
Vilmos Komornik has studied in Budapest, Hungary, and has taught in Hungary and France for nearly 40 years. His main research fields are control theory of partial differential equations and combinatorial number theory. He has made a number of contributions to the theory of J.L. Lions on exact controllability and stabilization and has co-authored several papers on expansions in noninteger bases with P. Erds.