Atjaunināt sīkdatņu piekrišanu

E-grāmata: Lectures on Functor Homology

Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Progress in Mathematics 311
  • Izdošanas datums: 08-Dec-2015
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783319213057
  • Formāts - PDF+DRM
  • Cena: 88,63 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Progress in Mathematics 311
  • Izdošanas datums: 08-Dec-2015
  • Izdevniecība: Birkhauser Verlag AG
  • Valoda: eng
  • ISBN-13: 9783319213057

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book features a series of lectures, that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems.In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament"s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko"s unpublished results.The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert"s fourteenth problem and its solution to the context of cohomo

logy. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin"s strict polynomial functors, a conceptual form of modules over the Schur algebra.Roman Mikhailov"s lectures highlight topological invariants: homotopy and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology.Lastly, Antoine Touzé"s introductory course on homological algebra makes the book accessible to graduate students new to the field.The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. By gathering these lectures, the editors hope to give the reader a feel for functors, and a valuable new perspective to apply totheir favourite problems.

Introduction.- A. Djament: Homologie Stable des Groupes ą Coefficients Polynomiaux .- W. van der Kallen: Nantes Lectures on Bifunctors and CFG .- R. Mikhailov: Polynomial Functors and Homotopy Theory .- A. Touzé: Prerequisites of Homological Algebra .
Introduction 1(6)
Homologie stable des groupes a coefficients polynomiaux
A. Djament
1 Introduction
7(10)
2 Premier lien entre homologie stable des groupes discrets et homologie des foncteurs
17(6)
3 Foncteurs polynomiaux; les resultats d'annulation de Scorichenko
23(5)
4 Deuxieme description de l'homologie stable des groupes lineaires et unitaires a coefficients polynomiaux par l'homologie des foncteurs
28(6)
5 Exemples de calculs et autres applications
34(7)
References
37(4)
Lectures on Bifunctors and Finite Generation of Rational Cohomology Algebras
W. van der Kallen
1 The CFG theorem
41(1)
2 Some history
41(3)
3 Some basic notions, notations and facts for group schemes
44(3)
4 Some basic notions, notations and facts for functors
47(5)
5 Precomposition by Frobenius
52(7)
6 Bifunctors and CFG
59(8)
References
63(4)
Polynomial Functors and Homotopy Theory
R. Mikhailov
1 Introduction
67(3)
2 Polynomial functors
70(8)
3 Homology of abelian groups
78(3)
4 The splitting of the derived functors
81(3)
5 Stable homotopy groups of K(A, 1)
84(7)
6 Functorial spectral sequences
91(8)
References
97(2)
Prerequisites of Homological Algebra
A. Touze
1 Introduction
99(2)
2 Derived functors of semi-exact functors
101(24)
3 Derived functors of non-additive functors
125(9)
4 Spectral sequences
134
References
148
Aurélien Djament

A. Djament is a CNRS researcher at the LMJL in Nantes. He studies functors categories and homological stability of infinite families of classical groups.

Wilberd van der Kallen

W. van der Kallen is a retired professor at the Mathematical Institute of Utrecht University. He is interested in representations of algebraic groups.

Roman V. Mikhailov

R. Mikhailkov is a researcher at the Steklov Institute of Mathematics in St-Petersburg. His interests include group theory, topology, category theory, and algebraic K-theory.

Antoine Touzé

A. Touzé holds a CNRS/Université Paris 13 chair as a Maītre de Conférences at the LAGA. He is interested in algebraic groups, homological algebra, and algebraic topology.