|
1 Perception and Imagination |
|
|
1 | (8) |
|
|
2 | (1) |
|
1.2 The Infinitely Complex |
|
|
2 | (1) |
|
1.3 The Paradoxes and the Second Revolution |
|
|
3 | (2) |
|
|
5 | (2) |
|
|
7 | (2) |
|
|
9 | (24) |
|
|
10 | (4) |
|
2.1.1 Einstein and the Photon |
|
|
12 | (1) |
|
2.1.2 Atomic Spectroscopy and Bohr's Model |
|
|
12 | (2) |
|
2.2 Wave Behavior of Particles |
|
|
14 | (4) |
|
|
14 | (1) |
|
2.2.2 Wave Behavior of Matter |
|
|
15 | (2) |
|
2.2.3 Analysis of the Phenomenon |
|
|
17 | (1) |
|
2.3 Probabilistic Nature of Quantum Phenomena |
|
|
18 | (3) |
|
2.3.1 Random Behavior of Particles |
|
|
18 | (1) |
|
2.3.2 A Nonclassical Probabilistic Phenomenon |
|
|
18 | (1) |
|
|
19 | (2) |
|
2.4 Phenomenological Description, de Broglie Waves |
|
|
21 | (1) |
|
2.5 First Discovery, Applications |
|
|
22 | (2) |
|
2.6 Appendix: Notions on Probabilities |
|
|
24 | (7) |
|
|
31 | (2) |
|
3 Wave Function, Schrddinger Equation |
|
|
33 | (30) |
|
3.1 Terminology and Methodology |
|
|
33 | (2) |
|
3.2 Principles of Wave Mechanics |
|
|
35 | (3) |
|
|
35 | (1) |
|
3.2.2 Schrodinger Equation in Presence of a Potential -- |
|
|
36 | (2) |
|
3.3 Superposition Principle |
|
|
38 | (1) |
|
|
39 | (3) |
|
|
39 | (1) |
|
|
39 | (2) |
|
3.4.3 Shape of Wave Packets |
|
|
41 | (1) |
|
|
42 | (1) |
|
3.6 Momentum Probability Law |
|
|
43 | (3) |
|
|
43 | (1) |
|
|
44 | (2) |
|
3.7 Heisenberg Uncertainty Relations |
|
|
46 | (4) |
|
3.8 Controversies and Paradoxes |
|
|
50 | (1) |
|
3.9 Appendix. Dirac S "Function", Distributions |
|
|
51 | (5) |
|
3.10 Appendix: Fourier Transformation |
|
|
56 | (4) |
|
|
60 | (3) |
|
|
61 | (2) |
|
4 Physical Quantities and Measurement |
|
|
63 | (18) |
|
4.1 Statement of the Problem |
|
|
64 | (2) |
|
4.1.1 Physical Quantities |
|
|
64 | (1) |
|
4.1.2 Position and Momentum |
|
|
65 | (1) |
|
|
66 | (3) |
|
4.2.1 Position and Momentum Observables |
|
|
67 | (1) |
|
4.2.2 Correspondence Principle |
|
|
68 | (1) |
|
4.2.3 Historical Landmarks |
|
|
68 | (1) |
|
4.3 A Counterexample of Einstein and Its Consequences |
|
|
69 | (6) |
|
4.3.1 What Do We Know After a Measurement? |
|
|
71 | (1) |
|
4.3.2 Eigenstates and Eigenvalues of an Observable |
|
|
72 | (1) |
|
4.3.3 Wave Packet Reduction |
|
|
73 | (1) |
|
|
74 | (1) |
|
4.4 Schrodinger's Cat Paradox |
|
|
75 | (5) |
|
|
80 | (1) |
|
|
80 | (1) |
|
5 Energy, Quantization and Quantum Tunneling |
|
|
81 | (26) |
|
5.1 Energy and Time Dependence |
|
|
81 | (4) |
|
|
81 | (2) |
|
5.1.2 The Schrodinger Equation, Time and Energy |
|
|
83 | (1) |
|
|
84 | (1) |
|
5.1.4 Motion: Interference of Stationary States |
|
|
84 | (1) |
|
|
85 | (2) |
|
5.2.1 Bound States and Scattering States |
|
|
86 | (1) |
|
5.2.2 One-Dimensional Problems |
|
|
87 | (1) |
|
5.3 The Harmonic Oscillator |
|
|
87 | (2) |
|
5.4 Square Well Potentials |
|
|
89 | (6) |
|
5.5 Crossing a Potential Barrier, Tunnel Effect |
|
|
95 | (1) |
|
5.6 Applications of the Tunnel Effect |
|
|
96 | (3) |
|
|
98 | (1) |
|
|
99 | (4) |
|
|
103 | (2) |
|
5.9 Problem. The Ramsauer effect |
|
|
105 | (2) |
|
|
106 | (1) |
|
6 Principles of Quantum Mechanics |
|
|
107 | (24) |
|
|
108 | (4) |
|
|
112 | (4) |
|
|
112 | (2) |
|
|
114 | (1) |
|
|
115 | (1) |
|
6.2.4 Projectors; Decomposition of the Identity |
|
|
115 | (1) |
|
|
116 | (5) |
|
6.3.1 Eigenvectors and Eigenvalues of an Observable |
|
|
116 | (1) |
|
6.3.2 Results of the Measurement of a Physical Quantity |
|
|
117 | (1) |
|
|
118 | (1) |
|
6.3.4 The Riesz Spectral Theorem |
|
|
119 | (1) |
|
6.3.5 Physical Meaning of Various Representations |
|
|
120 | (1) |
|
6.4 Principles of Quantum Mechanics |
|
|
121 | (2) |
|
6.4.1 The Case of a Continuous Spectrum |
|
|
122 | (1) |
|
6.5 Heisenberg's matrices |
|
|
123 | (4) |
|
|
127 | (4) |
|
|
129 | (2) |
|
7 Two-State Systems, Matrix Mechanics |
|
|
131 | (34) |
|
7.1 Double Well, the Ammonia Molecule |
|
|
131 | (8) |
|
|
132 | (1) |
|
7.1.2 Stationary States and Tunneling |
|
|
133 | (1) |
|
|
134 | (2) |
|
|
136 | (1) |
|
7.1.5 Inversion of the Molecule |
|
|
136 | (3) |
|
|
139 | (2) |
|
7.3 Matrix Quantum Mechanics |
|
|
141 | (4) |
|
7.4 NH3 in an Electric Field |
|
|
145 | (3) |
|
7.4.1 Uniform Constant Field |
|
|
146 | (1) |
|
7.4.2 Weak and Strong Field Regimes |
|
|
147 | (1) |
|
7.4.3 Other Two-State Systems |
|
|
148 | (1) |
|
7.5 Motion of the Molecule in an Inhomogeneous Field |
|
|
148 | (3) |
|
7.5.1 Force on the Molecule in an Inhomogeneous Field |
|
|
148 | (3) |
|
7.5.2 Population Inversion |
|
|
151 | (1) |
|
7.6 Reaction to an Oscillating Field, The Maser |
|
|
151 | (2) |
|
7.7 Principle and Applications of the Maser |
|
|
153 | (5) |
|
|
154 | (1) |
|
|
155 | (1) |
|
7.7.3 Atomic Clocks and the GPS |
|
|
155 | (1) |
|
7.7.4 Tests of Relativity |
|
|
156 | (2) |
|
|
158 | (3) |
|
7.9 Problem. Aromatic Molecules |
|
|
161 | (4) |
|
|
162 | (3) |
|
|
165 | (20) |
|
8.1 Polarization of Light |
|
|
165 | (6) |
|
8.1.1 Polarization States |
|
|
167 | (1) |
|
8.1.2 Polarizers at an Angle |
|
|
168 | (1) |
|
8.1.3 Polarization States |
|
|
168 | (2) |
|
8.1.4 Circular Polarisation |
|
|
170 | (1) |
|
|
170 | (1) |
|
8.2 Nature of Photon, Wave or Particle |
|
|
171 | (2) |
|
8.3 Interference Experiments |
|
|
173 | (4) |
|
8.3.1 Attenuated Light Experiments |
|
|
174 | (3) |
|
8.4 Physics with Individual Photons |
|
|
177 | (4) |
|
8.4.1 Single Photon Sources |
|
|
177 | (2) |
|
8.4.2 Particle Nature of the Photon |
|
|
179 | (2) |
|
8.5 Single Photon Interferences |
|
|
181 | (1) |
|
|
182 | (3) |
|
|
183 | (2) |
|
9 The Algebra of Observables |
|
|
185 | (26) |
|
9.1 Commutation of Observables |
|
|
186 | (2) |
|
9.1.1 Fundamental Commutation Relation |
|
|
186 | (1) |
|
9.1.2 Other Commutation Relations |
|
|
186 | (1) |
|
9.1.3 Dirac in the Summer of 1925 |
|
|
187 | (1) |
|
9.2 Uncertainty Relations |
|
|
188 | (1) |
|
9.3 Evolution of Physical Quantities |
|
|
189 | (4) |
|
9.3.1 Evolution of an Expectation Value |
|
|
189 | (1) |
|
9.3.2 Particle in a Potential, Classical Limit |
|
|
190 | (2) |
|
|
192 | (1) |
|
9.4 Algebraic Resolution of the Harmonic Oscillator |
|
|
193 | (3) |
|
9.5 Commuting Observables |
|
|
196 | (5) |
|
|
197 | (1) |
|
|
198 | (1) |
|
9.5.3 Tensor Structure of Quantum Mechanics |
|
|
198 | (1) |
|
9.5.4 Complete Set of Commuting Observables (CSCO) |
|
|
199 | (1) |
|
9.5.5 Completely Prepared Quantum State |
|
|
200 | (1) |
|
9.6 Sunday September 20, 1925 |
|
|
201 | (2) |
|
|
203 | (3) |
|
9.8 Problem. Quasi-Classical States of the Harmonic Oscillator |
|
|
206 | (5) |
|
|
207 | (3) |
|
|
210 | (1) |
|
|
211 | (18) |
|
|
211 | (5) |
|
10.1.1 Definition of the Problem |
|
|
211 | (2) |
|
10.1.2 First Order Perturbation Theory |
|
|
213 | (2) |
|
10.1.3 Second Order Perturbation to the Energy Levels -- |
|
|
215 | (1) |
|
10.2 The Variational Method |
|
|
216 | (3) |
|
|
216 | (1) |
|
|
217 | (1) |
|
10.2.3 Relation with Perturbation Theory |
|
|
218 | (1) |
|
|
218 | (1) |
|
|
219 | (1) |
|
10.4 Problem. Conductivity of Crystals; Energy Bands |
|
|
220 | (9) |
|
10.4.1 Electrons in a Periodic Potential |
|
|
221 | (3) |
|
|
224 | (5) |
|
|
229 | (22) |
|
11.1 Fundamental Commutation Relation |
|
|
230 | (2) |
|
11.1.1 Classical Angular Momentum |
|
|
230 | (1) |
|
11.1.2 Definition of an Angular Momentum Observable |
|
|
230 | (1) |
|
11.1.3 Results of the Quantization |
|
|
231 | (1) |
|
11.2 Proof of the Quantization |
|
|
232 | (4) |
|
11.2.1 Statement of the Problem |
|
|
232 | (1) |
|
11.2.2 Vectors | j,m > and Eigenvalues j and m |
|
|
233 | (1) |
|
11.2.3 Operators J± = Jx ±iJy |
|
|
233 | (2) |
|
|
235 | (1) |
|
11.3 Orbital Angular Momenta |
|
|
236 | (3) |
|
11.3.1 Formulae in Spherical Coordinates |
|
|
236 | (1) |
|
11.3.2 Integer Values of m and l |
|
|
236 | (1) |
|
11.3.3 Spherical Harmonics |
|
|
237 | (2) |
|
11.4 Rotation Energy of a Diatomic Molecule |
|
|
239 | (1) |
|
11.5 Interstellar Molecules, the Origin of Life |
|
|
240 | (4) |
|
11.6 Angular Momentum and Magnetic moment |
|
|
244 | (5) |
|
|
245 | (1) |
|
11.6.2 Quantum Transposition |
|
|
246 | (1) |
|
11.6.3 Experimental Consequences |
|
|
247 | (1) |
|
|
248 | (1) |
|
11.6.5 What About Half-Integer Values of j and m? |
|
|
248 | (1) |
|
|
249 | (2) |
|
|
251 | (24) |
|
12.1 Two-Body Problem; Relative Motion |
|
|
252 | (2) |
|
12.2 Motion in a Central Potential |
|
|
254 | (4) |
|
12.2.1 Separation of the Angular Variables |
|
|
254 | (2) |
|
12.2.2 The Radial Quantum Number n' |
|
|
256 | (1) |
|
12.2.3 The Principal Quantum Number n |
|
|
256 | (1) |
|
12.2.4 Spectroscopic Notation (States s, p, d, f, ...) |
|
|
257 | (1) |
|
|
258 | (8) |
|
12.3.1 Atomic Units; Fine Structure Constant |
|
|
258 | (2) |
|
12.3.2 The Dimensionless Radial Equation |
|
|
260 | (2) |
|
12.3.3 Spectrum of Hydrogen |
|
|
262 | (1) |
|
12.3.4 Stationary States of the Hydrogen Atom |
|
|
263 | (1) |
|
12.3.5 Dimensions and Orders of Magnitude |
|
|
264 | (1) |
|
12.3.6 Historical Landmarks |
|
|
265 | (1) |
|
|
266 | (3) |
|
|
269 | (3) |
|
12.6 Problem. Tritium β Decay and Neutrino Mass |
|
|
272 | (3) |
|
|
273 | (1) |
|
|
274 | (1) |
|
|
275 | (38) |
|
13.1 Experimental Results |
|
|
275 | (2) |
|
|
277 | (2) |
|
13.3 Complete Description of a Spin 1/2 Particle |
|
|
279 | (2) |
|
13.3.1 Mixed Representation |
|
|
279 | (1) |
|
13.3.2 Two-Component Wave Function |
|
|
279 | (1) |
|
|
280 | (1) |
|
13.4 Physical Spin Effects |
|
|
281 | (1) |
|
13.5 Spin Magnetic Moment |
|
|
281 | (1) |
|
13.6 The Stern-Gerlach Experiment |
|
|
282 | (1) |
|
13.7 Principle of the Experiment |
|
|
283 | (6) |
|
13.7.1 Semi-classical Analysis |
|
|
283 | (1) |
|
13.7.2 Experimental Results |
|
|
284 | (1) |
|
13.7.3 Explanation of the Stern-Gerlach Experiment |
|
|
285 | (2) |
|
13.7.4 Successive Stern-Gerlach Setups |
|
|
287 | (1) |
|
13.7.5 Measurement Along an Arbitrary Axis |
|
|
288 | (1) |
|
13.8 The Discovery of Spin |
|
|
289 | (6) |
|
13.8.1 The Hidden Sides of the Stern-Gerlach Experiment |
|
|
289 | (2) |
|
13.8.2 Einstein and Ehrenfest's Objections |
|
|
291 | (1) |
|
13.8.3 Anomalous Zeeman Effect |
|
|
292 | (1) |
|
13.8.4 Bohr's Challenge to Pauli |
|
|
293 | (1) |
|
13.8.5 The Spin Hypothesis |
|
|
293 | (1) |
|
13.8.6 The Fine Structure of Atomic Lines |
|
|
294 | (1) |
|
13.9 Magnetism, Magnetic Resonance |
|
|
295 | (10) |
|
13.9.1 Spin Effects, Larmor Precession |
|
|
296 | (1) |
|
13.9.2 Larmor Precession in a Fixed Magnetic Field |
|
|
296 | (1) |
|
13.9.3 Rabi's Calculation and Experiment |
|
|
297 | (4) |
|
13.9.4 Nuclear Magnetic Resonance |
|
|
301 | (2) |
|
13.9.5 Magnetic Moments of Particles |
|
|
303 | (2) |
|
13.10 Entertainment: Rotation by 2n of a Spin 1/2 |
|
|
305 | (1) |
|
|
306 | (1) |
|
13.12 Problem. Lorentz Force in Quantum Mechanics |
|
|
307 | (6) |
|
|
309 | (2) |
|
|
311 | (2) |
|
14 Fine and Hyperfine Structure of Spectral Lines |
|
|
313 | (28) |
|
14.1 Addition of Angular Momenta |
|
|
314 | (8) |
|
14.1.1 A Simple Case: The Addition of Two Spins 1/2 |
|
|
315 | (3) |
|
14.1.2 Addition of Two Arbitrary Angular Momenta |
|
|
318 | (4) |
|
14.2 One-Electron Atoms, Spectroscopic Notations |
|
|
322 | (3) |
|
14.2.1 Fine Structure of Monovalent Atoms |
|
|
322 | (3) |
|
14.3 Hyperfine Structure; The 21 cm Line of Hydrogen |
|
|
325 | (4) |
|
|
327 | (2) |
|
|
329 | (4) |
|
14.5 The 21-cm Line of Hydrogen |
|
|
333 | (2) |
|
14.6 The Intergalactic Medium; Star Wars |
|
|
335 | (4) |
|
|
339 | (2) |
|
15 Identical Particles, The Pauli Principle |
|
|
341 | (34) |
|
15.1 Indistinguishability of Two Identical Particles |
|
|
342 | (2) |
|
15.1.1 Identical Particles in Classical Physics |
|
|
342 | (1) |
|
15.1.2 The Quantum Problem |
|
|
343 | (1) |
|
15.1.3 Example of Ambiguities |
|
|
343 | (1) |
|
15.2 Two-Particle System; The Exchange Operator |
|
|
344 | (3) |
|
15.2.1 The Hilbert Space for the Two-Particle System |
|
|
344 | (1) |
|
15.2.2 The Exchange Operator Between Two Identical Particles |
|
|
345 | (1) |
|
15.2.3 Symmetry of the States |
|
|
346 | (1) |
|
|
347 | (3) |
|
15.3.1 The Case of Two Particles |
|
|
347 | (1) |
|
15.3.2 Independent Fermions and Exclusion Principle |
|
|
348 | (1) |
|
15.3.3 The Case of N Identical Particles |
|
|
348 | (2) |
|
15.4 Physical Consequences of the Pauli Principle |
|
|
350 | (10) |
|
15.4.1 Exchange Force Between Two Fermions |
|
|
350 | (1) |
|
15.4.2 The Ground State of N Identical Independent Particles |
|
|
351 | (1) |
|
15.4.3 Behavior of Fermion and Boson Systems at Low Temperatures |
|
|
352 | (2) |
|
15.4.4 Stimulated Emission and the Laser Effect |
|
|
354 | (2) |
|
15.4.5 Heisenberg Uncertainty Relations for N Fermions |
|
|
356 | (4) |
|
|
360 | (1) |
|
15.6 Problem. Pauli Principle and the Aging of Stars |
|
|
361 | (14) |
|
|
363 | (1) |
|
|
364 | (2) |
|
|
366 | (1) |
|
|
367 | (8) |
|
16 The Evolution of Systems |
|
|
375 | (30) |
|
16.1 Time-Dependent Perturbation Theory |
|
|
376 | (4) |
|
16.1.1 Example: A Collision Process |
|
|
376 | (2) |
|
16.1.2 Constant Perturbation |
|
|
378 | (1) |
|
16.1.3 Sinusoidal Perturbation |
|
|
379 | (1) |
|
16.2 Interaction of an Atom with an Electromagnetic Wave |
|
|
380 | (6) |
|
16.2.1 The Electric Dipole Approximation |
|
|
380 | (1) |
|
16.2.2 Justification of the Electric Dipole Interaction |
|
|
381 | (1) |
|
16.2.3 Absorption of Energy by an Atom |
|
|
382 | (1) |
|
|
383 | (1) |
|
16.2.5 Spontaneous Emission |
|
|
384 | (1) |
|
16.2.6 Control of an Atomic Motion by Light |
|
|
385 | (1) |
|
|
386 | (8) |
|
16.3.1 The Radioactivity of 57Fe |
|
|
387 | (2) |
|
16.3.2 The Fermi Golden Rule |
|
|
389 | (1) |
|
16.3.3 Orders of Magnitude |
|
|
390 | (1) |
|
16.3.4 Behavior for Long Times |
|
|
391 | (3) |
|
16.4 The Time-Energy Uncertainty Relation |
|
|
394 | (3) |
|
16.4.1 Isolated Systems and Intrinsic Interpretations |
|
|
394 | (1) |
|
16.4.2 Interpretation of Landau and Peierls |
|
|
395 | (1) |
|
16.4.3 The Einstein-Bohr controversy |
|
|
396 | (1) |
|
|
397 | (1) |
|
16.6 Problem. Molecular Lasers |
|
|
398 | (7) |
|
|
401 | (4) |
|
17 Entangled States. The Way of Paradoxes |
|
|
405 | (16) |
|
|
407 | (2) |
|
17.2 The Version of David Bohm |
|
|
409 | (8) |
|
|
411 | (3) |
|
17.2.2 Experimental Tests |
|
|
414 | (3) |
|
|
417 | (4) |
|
|
418 | (1) |
|
17.3.2 Local Realistic Situations |
|
|
419 | (2) |
|
18 Quantum Information and the Fruits of Entanglement |
|
|
421 | (20) |
|
18.1 Quantum Information: How to Take Advantage of an Embarrassment |
|
|
421 | (1) |
|
18.2 Quantum Teleportation |
|
|
422 | (5) |
|
|
423 | (4) |
|
18.3 Quantum Cryptography |
|
|
427 | (6) |
|
18.4 The Quantum Computer |
|
|
433 | (5) |
|
18.5 The Quantum Professions |
|
|
438 | (3) |
|
|
440 | (1) |
|
19 Solutions to the Exercises |
|
|
441 | (34) |
Index |
|
475 | |