Atjaunināt sīkdatņu piekrišanu

A Level Mathematics for OCR Student Book 1 (AS/Year 1) [Mīkstie vāki]

  • Formāts: Paperback / softback, 600 pages, height x width x depth: 263x195x25 mm, weight: 1160 g, Worked examples or Exercises
  • Sērija : AS/A Level Mathematics for OCR
  • Izdošanas datums: 06-Jul-2017
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1316644286
  • ISBN-13: 9781316644287
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 51,46 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 600 pages, height x width x depth: 263x195x25 mm, weight: 1160 g, Worked examples or Exercises
  • Sērija : AS/A Level Mathematics for OCR
  • Izdošanas datums: 06-Jul-2017
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1316644286
  • ISBN-13: 9781316644287
Citas grāmatas par šo tēmu:
Written for the OCR AS/A Level Mathematics specifications for first teaching from 2017, this print Student Book covers the content for AS and the first year of A Level. It balances accessible exposition with a wealth of worked examples, exercises and opportunities to test and consolidate learning, providing a clear and structured pathway for progressing through the course. It is underpinned by a strong pedagogical approach, with an emphasis on skills development and the synoptic nature of the course. Includes answers to aid independent study.

New 2017 Cambridge A Level Maths and Further Maths resources help students with learning and revision. Written for the OCR AS/A Level Mathematics specifications for first teaching from 2017, this print Student Book covers the content for AS and the first year of A Level. It balances accessible exposition with a wealth of worked examples, exercises and opportunities to test and consolidate learning, providing a clear and structured pathway for progressing through the course. It is underpinned by a strong pedagogical approach, with an emphasis on skills development and the synoptic nature of the course. Includes answers to aid independent study.

Papildus informācija

New 2017 Cambridge A Level Maths and Further Maths resources help students with learning and revision.
Introduction v
How to use this book vi
Working with the large data set viii
1 Proof and mathematical communication
1(15)
Section 1 Mathematical structures and arguments
1(6)
Section 2 Inequality notation
7(2)
Section 3 Disproof by counter example
9(1)
Section 4 Proof by deduction
10(2)
Section 5 Proof by exhaustion
12(4)
2 Indices and surds
16(11)
Section 1 Using the laws of indices
17(5)
Section 2 Working with surds
22(5)
3 Quadratic functions
27(28)
Section 1 Review of quadratic equations
28(2)
Section 2 Graphs of quadratic functions
30(4)
Section 3 Completing the square
34(8)
Section 4 Quadratic inequalities
42(3)
Section 5 The discriminant
45(4)
Section 6 Disguised quadratics
49(6)
4 Polynomials
55(15)
Section 1 Working with polynomials
56(1)
Section 2 Polynomial division
57(2)
Section 3 The factor theorem
59(3)
Section 4 Sketching polynomial functions
62(8)
5 Using graphs
70(17)
Section 1 Intersections of graphs
70(2)
Section 2 The discriminant revisited
72(2)
Section 3 Transforming graphs
74(4)
Section 4 Graphs of a/x and a/x2
78(1)
Section 5 Direct and inverse proportion
79(2)
Section 6 Sketching inequalities in two variables
81(6)
6 Coordinate geometry
87(26)
Section 1 Midpoint and distance between two points
89(2)
Section 2 Equation of a straight line
91(5)
Section 3 Parallel and perpendicular lines
96(4)
Section 4 Equation of a circle
100(3)
Section 5 Solving problems with lines and circles
103(10)
7 Logarithms
113(15)
Section 1 Introducing logarithms
114(4)
Section 2 Laws of logarithms
118(4)
Section 3 Solving exponential equations
122(2)
Section 4 Disguised quadratics
124(4)
8 Exponential models
128(21)
Section 1 Graphs of exponential functions
129(5)
Section 2 Graphs of logarithms
134(1)
Section 3 Exponential functions and mathematical modelling
135(6)
Section 4 Fitting models to data
141(8)
9 Binomial expansion
149(20)
Section 1 The binomial theorem
149(5)
Section 2 Calculating the binomial coefficients
154(3)
Section 3 Applications of the binomial theorem
157(12)
Focus on... Proof 1
161(1)
Focus on... Problem solving 1
162(3)
Focus on... Modelling 1
165(2)
Cross-topic review exercise 1
167(2)
10 Trigonometric functions and equations
169(34)
Section 1 Definitions and graphs of the sine and cosine functions
170(6)
Section 2 Definition and graph of the tangent function
176(1)
Section 3 Exact values of trigonometric functions
177(2)
Section 4 Trigonometric identities
179(5)
Section 5 Introducing trigonometric equations
184(5)
Section 6 Transformations of trigonometric graphs
189(4)
Section 7 More complex trigonometric equations
193(10)
11 Triangle geometry
203(17)
Section 1 The sine rule
204(5)
Section 2 The cosine rule
209(5)
Section 3 Area of a triangle
214(6)
12 Vectors
220(27)
Section 1 Describing vectors
221(5)
Section 2 Operations with vectors
226(6)
Section 3 Position and displacement vectors
232(5)
Section 4 Using vectors to solve geometrical problems
237(10)
13 Differentiation
247(23)
Section 1 Sketching derivatives
247(4)
Section 2 Differentiation from first principles
251(3)
Section 3 Rules of differentiation
254(4)
Section 4 Simplifying into terms of the form axn
258(3)
Section 5 Interpreting derivatives and second derivatives
261(9)
14 Applications of differentiation
270(20)
Section 1 Tangents and normals
270(5)
Section 2 Stationary points
275(4)
Section 3 Optimisation
279(11)
15 Integration
290(33)
Section 1 Rules for integration
291(3)
Section 2 Simplifying into terms of the form axn
294(3)
Section 3 Finding the equation of a curve
297(3)
Section 4 Definite integration
300(2)
Section 5 Geometrical significance of definite integration
302(21)
Focus on... Proof 2
315(1)
Focus on... Problem solving 2
316(2)
Focus on... Modelling 2
318(2)
Cross-topic review exercise 2
320(3)
16 Working with data
323(36)
Section 1 A reminder of statistical diagrams
324(9)
Section 2 Standard deviation
333(4)
Section 3 Calculations from frequency tables
337(6)
Section 4 Scatter diagrams and correlation
343(5)
Section 5 Outliers and cleaning data
348(11)
17 Probability
359(25)
Section 1 Combining probabilities
360(6)
Section 2 Probability distributions
366(4)
Section 3 The binomial distribution
370(14)
18 Statistical hypothesis testing
384(36)
Section 1 Populations and samples
385(10)
Section 2 Introduction to hypothesis testing
395(8)
Section 3 Critical region for a hypothesis test
403(17)
Focus on... Proof 3
411(2)
Focus on... Problem solving 3
413(1)
Focus on... Modelling 3
414(2)
Cross-topic review exercise 3
416(4)
19 Introduction to kinematics
420(35)
Section 1 Mathematical models in mechanics
421(2)
Section 2 Displacement, velocity and acceleration
423(5)
Section 3 Kinematics and calculus
428(4)
Section 4 Using travel graphs
432(13)
Section 5 Solving problems in kinematics
445(10)
20 Motion with constant acceleration
455(24)
Section 1 Deriving the constant acceleration formulae
455(5)
Section 2 Using the constant acceleration formulae
460(3)
Section 3 Vertical motion under gravity
463(7)
Section 4 Multi-stage problems
470(9)
21 Force and motion
479(27)
Section 1 Newton's laws of motion
479(5)
Section 2 Combining forces
484(5)
Section 3 Types of forces
489(5)
Section 4 Gravity and weight
494(4)
Section 5 Forces in equilibrium
498(8)
22 Objects in contact
506(38)
Section 1 Newton's third law
507(1)
Section 2 Normal reaction force
508(7)
Section 3 Further equilibrium problems
515(4)
Section 4 Connected particles
519(4)
Section 5 Pulleys
523(21)
Focus on... Proof 4
536(1)
Focus on... Problem solving 4
537(2)
Focus on... Modelling 4
539(2)
Cross-topic review exercise 4
541(3)
AS practice paper 1 544(2)
AS practice paper 2 546(2)
Formulae 548(1)
Answers 549(53)
Glossary 602(4)
Index 606(5)
Acknowledgements 611