Atjaunināt sīkdatņu piekrišanu

Leveraging Machine Learning for Operation Assessment [Mīkstie vāki]

  • Formāts: Paperback / softback, 96 pages, Illustrations
  • Izdošanas datums: 15-Jun-2022
  • Izdevniecība: RAND
  • ISBN-10: 197740443X
  • ISBN-13: 9781977404435
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 24,80 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 96 pages, Illustrations
  • Izdošanas datums: 15-Jun-2022
  • Izdevniecība: RAND
  • ISBN-10: 197740443X
  • ISBN-13: 9781977404435
Citas grāmatas par šo tēmu:

This report shows how machine learning (ML) can support assessment of military operations by describing and illustrating the use of ML in systematically extracting assessment-relevant insights from intelligence, operational, and media reporting.

Preface iii
Figures and Tables
vii
Summary ix
Acknowledgements xv
Abbreviations xvii
Chapter One Introduction
1(8)
Operation Assessment: Purpose and Challenges
2(3)
Incorporating Machine Learning into Operation Assessment
5(1)
Research Approach
6(1)
Organization of This Report
7(2)
Chapter Two Supervised Machine Learning and Assessment
9(10)
Supervised Machine Learning and Its Application to Assessment
10(2)
Step-by-Step Process for Implementing Supervised Machine Learning for Assessment
12(4)
Other Applications of Supervised Machine Learning to Assessment
16(3)
Chapter Three Operationalizing Available Data for Assessment
19(18)
Intelligence Data
19(5)
Operational Data
24(3)
Ambient Data
27(5)
Data Discovery and Preparation
32(3)
Integrating Data into Operation Assessment
35(2)
Chapter Four Example Using Operation Observant Compass
37(14)
Background on Operation Observant Compass
38(1)
Intelligence Data
39(3)
Operational Data
42(2)
Ambient Data
44(3)
Operational Activities
47(1)
Commander Decisionmaking
48(3)
Chapter Five Recommendations and Next Steps
51(8)
Recommendations
51(4)
Future Directions in Machine Learning and Assessment
55(2)
Caveats and Risks
57(2)
Appendixes
A Support Vector Machine
59(2)
B Code for Example in
Chapter Four
61(8)
References 69