Atjaunināt sīkdatņu piekrišanu

E-grāmata: Light Scattering Reviews 2

  • Formāts: PDF+DRM
  • Sērija : Environmental Sciences
  • Izdošanas datums: 29-Apr-2007
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540684350
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 154,06 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Environmental Sciences
  • Izdošanas datums: 29-Apr-2007
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783540684350
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Lightscatteringisusedinmanyapplications,rangingfromopticalparticlesizing of powders to interstellar dust studies. At the moment there is no a specialized journal aimed at studies of exclusively light scattering problems. Instead, d- ferent aspects of the problem and also di erent applications are considered in a varietyof specializedjournalscoveringseveralscienti cdisciplinessuchasch- istry, physics, biology, medicine, astrophysics, and atmospheric science, to name afew. The Light Scattering Reviews (LSR) series started in 2006 with the aim of facilitating interaction between di erent groups of scientists working in diverse scienti c areas but using the same technique, namely light scattering, for so- tion of speci c scienti c tasks. This second volume of LSR is devoted mostly to applications of light scattering in atmospheric research. The book consists of eight contributions prepared by internationally recognized authorities in cor- spondent research ?elds. The ?rst paper prepared by Howard Barker deals with the recent devel- ments in solar radiative transfer in the terrestrial atmosphere and global climate modelling. In particular, methods to compute radiative transfer characteristics needed for numerical global climate models are discussed in a great depth. Their de cienciesareaddressedaswell.Theproblemof3Dradiativetransferincloudy atmospheres, a hot topic in modern climate modelling, is also considered.

Recenzijas

From the reviews:









"The monograph includes eight in-depth review chapters contributed by leading experts in various aspects of light scattering and its applications. this one provides a wealth of information presented mostly in a systematic, self-contained, and accessible form. This book will be a valuable addition to any research or university library. Individual professional researchers should also seriously consider buying a copy of the book for personal use ." (Michael I. Mishchenko, Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 109, 2008)

List of contributors
xi
Notes on the contributors xiii
Preface xxi
Part I Remote Sensing and Radiative Transfer
Solar radiative transfer and global climate modelling
3(56)
H. W. Barker
Introduction
3(1)
Earth's radiation budget and feedbacks
4(5)
Earth's radiation budget and climatic variables
4(2)
Radiation and climate feedbacks
6(3)
Solar radiative transfer for global models
9(27)
The Independent Column Approximation (ICA)
10(1)
Fluxes for single layers: the two-stream approximation
11(4)
Linking layers
15(1)
When is the two-stream approximation applicable?
16(3)
Strategies to extend two-stream approximations
19(12)
Surface albedo
31(5)
1D vs. 3D radiative transfer for cloudy atmospheres: should global modellers be concerned?
36(7)
Domain-average fluxes
36(5)
Unresolved cloud-radiation interactions
41(2)
Remote sensing of cloudy atmospheres and global climate modelling
43(4)
Concluding remarks
47(12)
Appendix A: Two-stream approximations
49(3)
References
52(7)
On the remote sensing and radiative properties of cirrus
59(38)
Anthony J. Baran
Introduction
59(4)
Cirrus ice crystal models
63(5)
Computational methods applied to nonspherical ice crystals
68(6)
Airborne and satellite remote sensing of cirrus at solar and infrared wavelengths
74(13)
Airborne remote sensing of cirrus
78(5)
Satellite remote sensing of cirrus
83(4)
Summary
87(10)
References
89(8)
Retrieval of cloud optical thickness and effective radius using multispectral remote sensing and accounting for 3D effects
97(28)
Hironobu Iwabuchi
Introduction
97(2)
The stochastic cloud model
99(2)
Properties of high-resolution radiance
101(4)
Statistical analysis of the 3D effects and correction
105(6)
The influence on the statistics of retrieved optical thickness
105(1)
Biases in the statistics of the optical thickness
106(4)
Bias removal
110(1)
Pixel-by-pixel retrieval
111(9)
Retrieval method using adjacent pixel information
112(2)
Optical thickness retrieval
114(1)
Retrieval of optical thickness and effective particle radius
115(3)
Advanced method
118(2)
Concluding remarks
120(5)
References
122(3)
Raman lidar remote sensing of geophysical media
125(34)
Aleksey V. Malinka
Introduction
125(1)
Review of the existing methods of Raman lidar sounding
126(5)
Lidar equation
127(1)
The method of Raman reference signal
128(1)
The method of measuring an aerosol extinction profile with a Raman lidar
129(1)
The Raman DIAL method
129(1)
The method of rotational Raman scattering for determining the therrmodynamic characteristics of atmosphere
130(1)
The Raman lidar return with regard to multiple scattering
131(9)
Problem statement
131(1)
General solution
132(4)
Isotropic backscattering approximation
136(2)
The case of axially symmetric source and receiver patterns
138(2)
Spatial-angular pattern of the Raman lidar return
140(6)
Introduction to the problem
140(1)
The effective medium properties
140(3)
Spatial-angular patterns of Raman lidar returns and their dependence on the size of scatterers
143(3)
Retrieval of the microphysical properties of light scattering media using measurements of the Raman lidar return angular patterns
146(6)
The retrieval possibilities
146(1)
Use of double scattering for retrieving the volume concentration of scatterers
147(3)
The algorithm of simultaneous retrieval of the scattering coefficient and the effective droplet size
150(2)
Conclusion
152(7)
References
153(6)
Part II Inverse Problems
Linearization of vector radiative transfer by means of the forward-adjoint perturbation theory and its use in atmospheric remote sensing
159(46)
Otto P. Hasekamp
Jochen Landgraf
Introduction
159(2)
Radiative transfer model
161(5)
Radiative transfer equation in operator form
162(4)
Mie scattering calculations
166(2)
Linearization of the forward model
168(8)
Linearization of radiative transfer
169(5)
Linearization of Mie theory
174(2)
Numerical implementation and results
176(3)
Retrieval method
179(7)
Inversion of linearized forward model
180(5)
Levenberg-Marquardt iteration
185(1)
Application to GOME-2
186(10)
GOME-2 measurements
187(2)
Retrieval results
189(1)
Information content
190(6)
Conclusions
196(9)
Appendix A: The Mie coefficients and their derivatives
197(2)
Appendix B: Aerosol and ocean properties
199(1)
Aerosol size distribution
199(1)
Ocean description
199(2)
References
201(4)
Derivatives of the radiation field and their application to the solution of inverse problems
205(64)
V. V. Rozanov
A. V. Rozanov
A. A. Kokhanovsky
Introduction
205(2)
Derivatives of the intensity and weighting functions
207(2)
Basic formulation of the direct and adjoint radiative transfer equations in the operator form
209(5)
Generalized form of the direct radiative transfer equation
210(1)
Adjoint radiative transfer operator
211(1)
Adjoint approach and the adjoint radiative transfer equation
212(2)
General expressions for weighting functions
214(4)
Weighting functions for absorption and scattering coefficients
218(1)
Weighting functions for a mixture of scattering and absorbing components
219(2)
Examples of weighting functions for the aerosol and cloud parameters
221(10)
Weighting functions for the aerosol scattering coefficient and aerosol particles number density
223(4)
Weighting functions for the aerosol scattering coefficient
227(4)
Weighting functions for temperature and pressure
231(5)
Theory
231(2)
Examples
233(3)
Weighting functions for particle number concentration and effective radius of droplets
236(7)
Cloud parameters
236(4)
Weighting functions
240(3)
Examples of weighting functions for particle number concentration, liquid water content, and effective radius of water droplets
243(4)
Application to the retrieval of the effective radius of water droplets
247(2)
Weighting functions for cloud geometrical parameters
249(10)
Theory
250(4)
Numerical results
254(5)
Conclusion
259(10)
Appendix A: Derivation of weighting functions for main parameters
261(3)
References
264(5)
Part III Numerical Techniques
Studies of light scattering by complex particles using the null-field method with discrete sources
269(26)
Thomas Wriedt
Introduction
269(1)
Discrete Sources Method
270(1)
T-matrix method
271(1)
Null-Field method with Discrete Sources
272(5)
T-matrix computation
275(1)
Orientation averaged scattering
276(1)
Computation of surface integrals
276(1)
Scattering by complex particles
277(11)
Fibres
277(2)
Flat plates
279(1)
Cassini ovals
280(1)
Anisotropic particles
281(2)
Arbitrarily shaped 3D particles
283(1)
Agglomerates
284(1)
Inclusions
285(2)
Particles on surfaces
287(1)
Validation
288(2)
Applications
290(1)
Conclusion
290(1)
Symbols and abbreviations
291(4)
References
291(4)
Radiative transfer in horizontally and vertically inhomogeneous turbid media
295(54)
O. V. Nikolaeva
L. P. Bass
T. A. Germogenova
V. S. Kuznetsov
A. A. Kokhanovsky
Introduction
295(3)
Description of the calculation region
298(1)
Discrete ordinates method and a angular quadratures
299(3)
Scattering integral representation
302(3)
The general solution
305(1)
Approximation of differential operator L
306(4)
Properties of DOM grid schemes
307(1)
Classification of grid schemes
308(2)
Long characteristics schemes
310(1)
Short characteristics schemes
311(4)
Integro-interpolational schemes
315(5)
Zero spatial moments schemes without corrections
315(4)
Zero spatial moment schemes with corrections
319(1)
Nodal schemes
319(1)
Finite element schemes
320(1)
The solution of the grid equation
320(2)
Technique of transport equation solving by the parallel discrete ordinates method
322(3)
Discrete ordinates codes
325(5)
SHDOM code
325(1)
The code RADUGA-5.1(P)
326(4)
Simplified discrete ordinates models
330(10)
Accuracy estimation for simple 1D models
330(3)
Spherical atmosphere models
333(5)
DOM in problems with polarization
338(2)
Conclusion
340(9)
References
341(8)
Index 349