Atjaunināt sīkdatņu piekrišanu

Light Scattering Reviews 5: Single Light Scattering and Radiative Transfer 2010 ed. [Hardback]

  • Formāts: Hardback, 549 pages, height x width: 240x170 mm, weight: 1254 g, XXVII, 549 p., 1 Hardback
  • Sērija : Environmental Sciences
  • Izdošanas datums: 27-Aug-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642103359
  • ISBN-13: 9783642103353
  • Hardback
  • Cena: 180,78 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Standarta cena: 212,69 €
  • Ietaupiet 15%
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 549 pages, height x width: 240x170 mm, weight: 1254 g, XXVII, 549 p., 1 Hardback
  • Sērija : Environmental Sciences
  • Izdošanas datums: 27-Aug-2010
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • ISBN-10: 3642103359
  • ISBN-13: 9783642103353
Light scattering by densely packed inhomogeneous media is a particularly ch- lenging optics problem. In most cases, only approximate methods are used for the calculations. However, in the case where only a small number of macroscopic sc- tering particles are in contact (clusters or aggregates) it is possible to obtain exact results solving Maxwells equations. Simulations are possible, however, only for a relativelysmallnumberofparticles,especiallyiftheirsizesarelargerthanthewa- length of incident light. The ?rst review chapter in PartI of this volume, prepared by Yasuhiko Okada, presents modern numerical techniques used for the simulation of optical characteristics of densely packed groups of spherical particles. In this case, Mie theory cannot provide accurate results because particles are located in the near ?eld of each other and strongly interact. As a matter of fact, Maxwells equations must be solved not for each particle separately but for the ensemble as a whole in this case. The author describes techniques for the generation of shapes of aggregates. The orientation averaging is performed by a numerical integration with respect to Euler angles. The numerical aspects of various techniques such as the T-matrix method, discrete dipole approximation, the ?nite di erence time domain method, e ective medium theory, and generalized multi-particle Mie so- tion are presented. Recent advances in numerical techniques such as the grouping and adding method and also numerical orientation averaging using a Monte Carlo method are discussed in great depth.
List of contributors
xiii
Notes on the contributors xvii
Preface xxiii
Part I Optical Properties of Small Particles and their Aggregates
1 Numerical Simulations of light scattering and absorption Characteristics of aggregates
3(34)
Y. Okada
1.1 Introduction
3(1)
1.2 Properties of aggregates used in numerical simulations
4(4)
1.2.1 Physical and light scattering properties
4(2)
1.2.2 Shapes of aggregates
6(1)
1.2.3 Aggregates orientation
7(1)
1.3 Methods for numerical light scattering simulations
8(5)
1.3.1 The DDA and FDTD
10(1)
1.3.2 The CTM and GMM
11(1)
1.3.3 The EMT
12(1)
1.3.4 Future extensions of the numerical methods
12(1)
1.4 Improved numerical simulations
13(14)
1.4.1 Grouping and adding method (GAM)
13(3)
1.4.2 Numerical orientation averaging using a quasi-Moute-Carlo method (QMC)
16(3)
1.4.3 Extended calculation of light scattering properties with numerical orientation averaging
19(3)
1.4.4 Scattering and absorption of BCCA composed of tens to thousands of monomers
22(2)
1.4.5 Intensity and polarization of light scattered by silicate aggregates
24(3)
1.5 Summary
27(10)
References
31(6)
2 Application of scattering theories to the characterization of precipitation processes
37(44)
Sandra Jacquier
Frederic Gruy
2.1 Introductions
37(1)
2.2 Aggregate formation
38(6)
2.2.1 Precipitation and particle synthesis
38(1)
2.2.2 Particle shapes during precipitation
39(2)
2.2.3 Dynamics of precipitation: modelling
41(1)
2.2.4 Particle sizing during precipitation
42(2)
2.3 Approximations for non-spherical particles
44(3)
2.3.1 Rayleigh approximation
44(1)
2.3.2 Rayleigh-Gans-Debye approximations
44(2)
2.3.3 Anomalous Diffraction approximation
46(1)
2.4 Approximations for aggregate scattering cross-section
47(17)
2.4.1 Exact theory for non-spherical particles and aggregates
47(3)
2.4.2 Main features of the scattering properties of aggregates
50(5)
2.4.3 Approximate methods (CS, BPK, AD, ERI) for aggregates
55(6)
2.4.4 Application: turbidity versus time during the agglomeration process
61(3)
2.5 Approximation for radiation pressure cross-section
64(6)
2.5.1 Introduction
64(1)
2.5.2 Main features of radiation pressure cross-section
65(3)
2.5.3 Approximate methods for aggregates
68(2)
2.5.4 Conclusion
70(1)
2.6 Scattering properties versus geometrical parameters of aggregates
70(4)
2.7 Conclusion
74(7)
References
75(6)
Part II Modern Methods in Radiative Transfer
3 Using a 3-D radiative transfer Monte---Carlo model to assess radiative effects on polarized reflectances above cloud scenes
81(24)
C. Cornet
L. C-Labonnote
F. Szczap
3.1 Introduction
81(1)
3.2 Including the polarization in a 3-D Monte---Carlo atmospheric radiative transfer model
82(9)
3.2.1 Description of radiation and single scattering: Stokes vector and phase matrix
82(5)
3.2.2 Description of the radiative transfer model. 3DMCpol
87(4)
3.3 Total and polarized reflectances in the case of homogeneous clouds (1-D)
91(3)
3.3.1 Validation of the MC polarized model
91(3)
3.3.2 Reflectances of homogeneous clouds as a function of the optical thickness
94(1)
3.4 Total and polarized reflectances in the case of 3-D cloud fields
94(7)
3.4.1 Description of the 3-D cloud fields used
94(2)
3.4.2 Comparisons with SHDOM and time considerations
96(2)
3.4.3 High spatial resolution (80 m): illumination and shadowing effects
98(1)
3.4.4 Medium spatial resolution (10 Km): sub-pixel heterogeneity effects
99(2)
3.5 Conclusions and perspectives
101(4)
References
102(3)
4 Linearization of radiative transfer in spherical geomentry: an application of the forword-adjoint perturbation theory
105(42)
Holger H. Walter
Jochen Landgraf
4.1 Introduction
105(3)
4.2 Forward-adjoint perturbation theory in spherical geometry
108(7)
4.2.1 The forward radiative transfer equation
108(3)
4.2.2 The adjoint formulation of radiative transfer
111(3)
4.2.3 Perturbation theory in speherical coordinates
114(1)
4.3 Symmetry properties
115(2)
4.4 Linerization of a radiative transfer model for a spherical shell atmosphere by the forward-adjoint perturbation theory
117(15)
4.4.1 Solution of the radiative transfer equation by a Picard iteration method
118(8)
4.4.2 Solution of the pseudo-forward transfer equation
126(2)
4.4.3 Verification of the adjoint radiation field
128(4)
4.5 Linearization of the spherical radiative transfer model
132(7)
4.6 Conclusions
139(8)
Appendix A Transformation of a volume sources into a surface sources
140(2)
References
142(5)
5 Convergence acceleration of radiative transfer equation solution at strongly anisotropic scattering
147(58)
Vladimir P. Budak
Dmitriy A. Klyuykov
Sergey V. Korkin
5.1 Introduction
147(1)
5.2 Singularities of the solution of the radiative transfer equation
148(4)
5.3 Small angle modification of the spherical harmonics method
152(4)
5.4 Small angle approximation in transport theory
156(4)
5.5 Determination of the solution of the regular part in a plane unidirectional source problem
160(7)
5.6 Reflection and transmittance on the boundary of two slabs
167(8)
5.7 Generalization for the vectorial case of polarized radiation
175(6)
5.8 Evaluation of the vectorial regular part
181(7)
5.9 MSH in arbitrary medium geometry
188(7)
5.10 Regular part computation in arbitrary medium geometry
195(4)
5.11 Conclusion
199(6)
References
201(4)
6 Code SHARM: fast and accurate radiative transfer over spatially variable anisotropic surfaces
205(44)
Alexei Lyapustin
Tolegen Muldashev
Yujie Wang
6.1 The method of spherical harmonics: homogeneous surface
206(6)
6.1.1 Solution for path radiance
209(2)
6.1.2 Correction function of MSH
211(1)
6.2 Code SHARM
212(4)
6.2.1 Accuracy, convergence and speed of SHARM
214(2)
6.3 Green's function method and its applications
216(8)
6.3.1 Formal solution with the Green's function method
216(3)
6.3.2 Practical considerations
219(2)
6.3.3 Expression for TOA reflectance using LSRT BRF model
221(3)
6.4 Green's Functions solution for anisotropic inhomogeneous surface
224(8)
6.4.1 Operator solution for anisotropic inhomogeneous surface
224(3)
6.4.2 Linearized solution
227(2)
6.4.3 Lambertian approximation
229(1)
6.4.4 Numerical aspects
230(2)
6.5 MSH solution for the optical transfer function
232(2)
6.6 Similarity transformations
234(6)
6.6.1 Singular value decomposition
236(1)
6.6.2 Solution for moments
237(1)
6.6.3 Solution for the OTF
237(3)
6.7 Code SHARM-3D
240(2)
6.7.1 Parameterized SHARM-3D solution
240(2)
6.8 Discussion
242(7)
References
244(5)
7 General invaiance relations reduction method and its applications to solution of radiative transfer problems for turbid media of various configurations
249(82)
Nikolai N. Rogovtsov
7.1 Introduction
249(3)
7.2 Main statements of the general invariance relations reduction method
252(27)
7.2.1 Statement of boudary-value problems of the scalar radiative transfer theory
252(8)
7.2.2 Statement of the general invariance principle as applied to radiative transfer theory
260(10)
7.2.3 General invariance relations and their physical interpretation
270(7)
7.2.4 Scheme of using the general invariance principle and the general invariance relations
277(2)
7.3 Some general examples of using the general invariance relations reduction method
279(15)
7.3.1 Doubling formulae
279(1)
7.3.2 On the relationship between the volume Green functions and the generalized reflection functions
280(2)
7.3.3 Analog of the Kirchhoff law for the case of non-equilibrium radiation in turbid media
282(2)
7.3.4 General invariance relations for monochromatic radiations fluxes
284(4)
7.3.5 Inequalities for monochromatic rodiations fluxes and mean emission durations of turbid bodies
288(6)
7.4 Strict, asymptotic and approximate analytical solutions to boundary value problems of the radiative transfer theory for turbid media of various configurations
294(19)
7.4.1 Application of the general invariance relations reduction method to the derivation of azimuth-averaged reflection function for a macroscopically homogeneous plane-parallel semi-infinite turbid medium
294(7)
7.4.2 Asymptotic and approximate analytical expressions for monochromatic radiation fluxes exiting macrosocopically homogeneous non-concave turbid bodies
301(8)
7.4.3 On the depth regimes of radiation fields and on the derivation of asymptotic expressions for mean emission durations of optically thick, turbid bodies
309(4)
7.5 Conclusion
313(18)
Appendix A
314(4)
References
318(13)
Part III Optical Properties of Bright Surfaces and Regoliths
8 Theoretical and observational techniques for estimating light scattering in first-year Arctic sea ice
331(62)
Bonnie Light
8.1 Introduction
331(1)
8.2 Background
331(1)
8.3 Approach
332(2)
8.4 Sea ice microstructure
334(22)
8.4.1 Overview
334(3)
8.4.2 Laboratory observations
337(2)
8.8.4 Microstructure at - 15°C
339(8)
8.8.4 Temperature-dependent changes
347(7)
8.8.4 Summary of microstructure observations
354(2)
8.5 Apparent optical property observations
356(4)
8.6 Radiative transfer in a cylindrical domain with refractive boundaries
360(10)
8.6.1 Model overview
361(3)
8.6.2 Implementation
364(4)
8.6.3 Similarity
368(1)
8.6.4 Simulation of laboratory observations
368(2)
8.7 Structural-optical model
370(17)
8.7.1 Structural-optical relationships
370(4)
8.7.2 Phase functions
374(2)
8.7.3 Model development and testing
376(5)
8.7.4 Discussion
381(6)
8.8 Conclusions
387(6)
References
388(5)
9 Reflectance of various snow types: measurements, modeling, and potential for snow melt monitoring
393(58)
Jouni I. Peltoniemi
Juha Suomalainen
Teemu Hakala
Jyri Naranen
Eetu Puttonen
Sanna Kaasalainen
Manuela Hirschmugl
Johanna Torppa
9.1 Introduction
393(2)
9.2 Snow
395(1)
9.3 BRF, definitions
396(2)
9.4 Instrumentation
398(8)
9.4.1 Model 2, 1996: a simple one-angle manual field goniometer
399(1)
9.4.2 Goniometer model 3, 1999-2005
399(2)
9.4.3 FIGIFIGO, 2005
401(2)
9.4.4 Light sources
403(1)
9.4.5 Data processing
404(2)
9.5 Main research efforts
406(5)
9.6 Modeling
411(2)
9.7 Results
413(26)
9.7.1 Forward scattering signatures
422(11)
9.7.2 Specular scattering effects
433(1)
9.7.3 Spectral effects
433(1)
9.7.4 Polarization signals
434(1)
9.7.5 Albedos
434(15)
9.8 Discussion
439(3)
9.8.1 Melting signatures - a summary
439(1)
9.8.2 Development of BRF measurement techniques
440(1)
9.8.3 Supporting snow measurements
441(1)
9.8.4 Modeling
442(1)
9.9 Conclusion
442(9)
References
443(8)
10 Simulation and modeling of light scattering in paper and print applications
451(26)
Per Edstrom
10.1 Introduction
451(1)
10.2 Current industrial use of light scattering models
451(11)
10.2.1 Standardized use of Kubelka-Munk
451(3)
10.2.2 Deficiencies of Kubelka-Munk
454(5)
10.2.3 Suggested extensions to Kubelka-Munk
459(2)
10.2.4 New and higher demands drive the need for new models
461(1)
10.3 Benefits of newer models
462(9)
10.3.1 Radiative transfer modeling
462(5)
10.3.2 Monte Carlo modeling
467(4)
10.3.3 Impact on measurement systems and industry standards
471(1)
10.4 Discussion
471(2)
10.5 Conclusions
473(4)
References
473(4)
11 Coherent backscattering in planetary regoliths
477(42)
Karri Muinonen
Jani Tyynela
Evgenij Zubko
Gorden Videen
11.1 Introduction
477(3)
11.2 Single-particle light scattering
480(14)
11.2.1 Scattering matrix, cross-section, and asymmetry parameters
480(1)
11.2.2 Scattering by Gaussian-random-sphere and agglomerated-debris particles
481(1)
11.2.3 Internal vs. scattered fields
482(5)
11.2.4 Interference in single scattering
487(3)
11.2.5 Parameterizing single scattering
490(4)
11.3 Coherent backscattering
494(15)
11.3.1 Coherent-backscattering mechanism
495(2)
11.3.2 Theoretical framework for multiple scattering
497(2)
11.3.3 Scalar approximation
499(5)
11.3.4 Vector approach
504(5)
11.4 Physical modeling
509(3)
11.4.1 Polarization fits
509(3)
11.4.2 Coherent-backscattering simulations
512(1)
11.5 Conclusion
512(7)
References
514(5)
Color Section 515(1)
Index 515