Atjaunināt sīkdatņu piekrišanu

Linear Algebra [Mīkstie vāki]

  • Formāts: Paperback / softback, 328 pages, height x width: 254x178 mm, weight: 333 g
  • Sērija : Pure and Applied Undergraduate Texts
  • Izdošanas datums: 30-Sep-2020
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470456702
  • ISBN-13: 9781470456702
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 97,63 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 328 pages, height x width: 254x178 mm, weight: 333 g
  • Sērija : Pure and Applied Undergraduate Texts
  • Izdošanas datums: 30-Sep-2020
  • Izdevniecība: American Mathematical Society
  • ISBN-10: 1470456702
  • ISBN-13: 9781470456702
Citas grāmatas par šo tēmu:
This text develops linear algebra with the view that it is an important gateway connecting elementary mathematics to more advanced subjects, such as advanced calculus, systems of differential equations, differential geometry, and group representations. The purpose of this book is to provide a treatment of this subject in sufficient depth to prepare the reader to tackle such further material. The text starts with vector spaces, over the sets of real and complex numbers, and linear transformations between such vector spaces. Later on, this setting is extended to general fields. The reader will be in a position to appreciate the early material on this more general level with minimal effort. Notable features of the text include a treatment of determinants, which is cleaner than one often sees, and a high degree of contact with geometry and analysis, particularly in the chapter on linear algebra on inner product spaces. In addition to studying linear algebra over general fields, the text has a chapter on linear algebra over rings. There is also a chapter on special structures, such as quaternions, Clifford algebras, and octonions.
Preface vii
Some basic notation xiii
Chapter 1 Vector spaces, linear transformations, and matrices
1(46)
1.1 Vector spaces
2(5)
1.2 Linear transformations and matrices
7(6)
1.3 Basis and dimension
13(7)
1.4 Matrix representation of a linear transformation
20(2)
1.5 Determinants and invertibility
22(12)
1.6 Applications of row reduction and column reduction
34(13)
Chapter 2 Eigenvalues, eigenvectors, and generalized eigenvectors
47(24)
2.1 Eigenvalues and eigenvectors
48(6)
2.2 Generalized eigenvectors and the minimal polynomial
54(6)
2.3 Triangular matrices and upper triangularization
60(5)
2.4 The Jordan canonical form
65(6)
Chapter 3 Linear algebra on inner product spaces
71(68)
3.1 Inner products and norms
73(7)
3.2 Norm, trace, and adjoint of a linear transformation
80(5)
3.3 Self-adjoint and skew-adjoint transformations
85(9)
3.4 Unitary and orthogonal transformations
94(8)
3.5 Schur's upper triangular representation
102(4)
3.6 Polar decomposition and singular value decomposition
106(7)
3.7 The matrix exponential
113(13)
3.8 The discrete Fourier transform
126(13)
Chapter 4 Further basic concepts: duality, convexity, quotients, positivity
139(18)
4.1 Dual spaces
141(2)
4.2 Convex sets
143(4)
4.3 Quotient spaces
147(2)
4.4 Positive matrices and stochastic matrices
149(8)
Chapter 5 Multilinear algebra
157(18)
5.1 Multilinear mappings
158(2)
5.2 Tensor products
160(3)
5.3 Exterior algebra
163(9)
5.4 Isomorphism Skew (V) = A2V and the Pfaffian
172(3)
Chapter 6 Linear algebra over more general fields
175(14)
6.1 Vector spaces over more general fields
176(10)
6.2 Rational matrices and algebraic numbers
186(3)
Chapter 7 Rings and modules
189(42)
7.1 Rings and modules
191(12)
7.2 Modules over principal ideal domains
203(11)
7.3 The Jordan canonical form revisited
214(3)
7.4 Integer matrices and algebraic integers
217(4)
7.5 Noetherian rings and Noetherian modules
221(5)
7.6 Polynomial rings over UFDs
226(5)
Chapter 8 Special structures in linear algebra
231(46)
8.1 Quaternions and matrices of quaternions
233(7)
8.2 Algebras
240(8)
8.3 Clifford algebras
248(9)
8.4 Octonions
257(20)
Appendix A Complementary results
277(24)
A.1 The fundamental theorem of algebra
278(2)
A.2 Averaging rotations
280(4)
A.3 Groups
284(7)
A.4 Finite fields and other algebraic field extensions
291(10)
Bibliography 301(2)
Index 303
Michael E. Taylor, University of North Carolina, Chapel Hill, NC