Atjaunināt sīkdatņu piekrišanu

E-grāmata: Linear Holomorphic Partial Differential Equations and Classical Potential Theory

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 155,83 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Why do solutions of linear analytic PDE suddenly break down? What is the source of these mysterious singularities, and how do they propagate? Is there a mean value property for harmonic functions in ellipsoids similar to that for balls? Is there a reflection principle for harmonic functions in higher dimensions similar to the Schwarz reflection principle in the plane? How far outside of their natural domains can solutions of the Dirichlet problem be extended? Where do the continued solutions become singular and why? This book invites graduate students and young analysts to explore these and many other intriguing questions that lead to beautiful results illustrating a nice interplay between parts of modern analysis and themes in ``physical'' mathematics of the nineteenth century. To make the book accessible to a wide audience including students, the authors do not assume expertise in the theory of holomorphic PDE, and most of the book is accessible to anyone familiar with multivariable calculus and some basics in complex analysis and differential equations.
Introduction:
Some motivating questions;
The Cauchy-Kovalevskaya theorem with estimates;
Remarks on the Cauchy-Kovalevskaya theorem;
Zerner's theorem;
The method of globalizing families;
Holmgren's uniqueness theorem;
The continuity method of F. John;
The Bony-Schapira theorem;
Applications of the Bony-Schapira theorem: Part I - Vekua hulls;
Applications of the Bony-Schapira theorem: Part II - Szego's theorem
revisited;
The reflection principle; The reflection principle (continued);
Cauchy problems and the Schwarz potential conjecture;
The Schwarz potential conjecture for spheres;
Potential theory on ellipsoids: Part I - The mean value property;
Potential theory on ellipsoids: Part II - There is no gravity in the cavity;

Potential theory on ellipsoids: Part III - The Dirichlet problem;
Singularities encountered by the analytic continuation of solutions to the
Dirichlet problem;
An introduction to J. Leray's principle on propagation of singularities
through $\mathbb{C}^n$;
Global propagation of singularities in $\mathbb{C}^n$;
Quadrature domains and Laplacian growth;
Other varieties of quadrature domains;
Bibliography;
Index.