Atjaunināt sīkdatņu piekrišanu

E-grāmata: Linear and Nonlinear Optics: Materials, Properties, and Applications

  • Formāts: 344 pages
  • Izdošanas datums: 31-Jan-2021
  • Izdevniecība: Jenny Stanford Publishing
  • Valoda: eng
  • ISBN-13: 9781000091847
  • Formāts - PDF+DRM
  • Cena: 130,74 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 344 pages
  • Izdošanas datums: 31-Jan-2021
  • Izdevniecība: Jenny Stanford Publishing
  • Valoda: eng
  • ISBN-13: 9781000091847

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

In recent years, optical properties of the unique atomic and molecular structures of materials have drawn great scientific interest. Linear optical properties of materials such as metals, metal oxides, magnetic oxides, and organic materials are based on energy transfer and find applications in wastewater treatment, forensic science, biomedical science, photovoltaics, nuclear technology, and LED displays. Nonlinear optical properties of materials are based on the nonlinear medium and find more advanced applications in frequency mixing generations and optical parametric oscillations.

This book presents the underlying principles, implementation, and applications of the linear and nonlinear optical properties of materials and has been divided into two parts emphasizing these properties. The first part of the book, Linear Optics, discusses bimetallic nanoparticles in dielectric media and their integration to dye molecules to detect trace amounts of heavy metals at the nanometer level, as well as to enhance luminescence and image contrasts in forensic inspection and biomedical diagnosis. It shows how the integration of bimetallic nanoparticles into a ZnO matrix promotes broadening of the absorption spectrum from the ultraviolet to the visible wavelength. It explains the role of surface adsorption and photocatalytic degradation in dye-removal kinetics by Fe3O4 magnetic nanoparticles under pulsed white light. It also discusses the double-layer shielding tank design to safely store radioactive waste and photon propagation through the multilayer structures of a human tissue model. The second part of the book, Nonlinear Optics, presents general concepts such as electromagnetic theory, nonlinear medium, and wave propagation, as well as more advanced concepts such as second harmonic generation, phase matching, optical parametric interactions, different frequency generation, sum frequency generation, tunable laser, and optical resonant oscillator.

Recenzijas

"This book describes some of the linear and nonlinear optical properties of materials. The theory is clearly presented and easy to follow. Many excellent applications and examples are presented throughout the book. Questions are given in each chapter, with their answers at the end of the book. The book is useful for both students and workers in the field."

Prof. James C. Wyant, University of Arizona, USA

"The book covers the basic theory of linear and nonlinear optics and various practical applications, including MATLAB programming codes. It also provides many equations, figures, and problems to enhance understanding. I recommend this book for college students and researchers in related fields."

Prof. Hiroshi Yoshikawa, Nihon University, Japan

"This book presents the underlying principles of the linear and nonlinear optical properties of materials. It is divided into two parts. The first part, Linear Optics, discusses optical properties, implementation and applications of noble metals, metal oxides, magnetic oxides and organic materials. The author has also included his original research work and its interesting outcome. Part two, Nonlinear Optics, covers the general concepts of electromagnetic theory and wave propagation in a nonlinear medium. Finally, the author discusses second harmonic generation, phase matching, optical parametric interactions, different frequency generation, sum frequency generation, tunable lasers and optical resonant oscillators.

There are illustrations, examples and problem sets with solutions for each chapter, which makes it a helpful resource for problem solving. The book is suitable for students and researchers in optical physics and related fields."

Reva Garg, University of Brasilia, Brazil

Preface ix
Part I Linear Optics
1 Au-Core Pd-Shell Nanoparticles
3(44)
1.1 Introduction
3(1)
1.2 Principle
4(11)
1.2.1 Surface Plasmon Resonance
4(7)
1.2.2 Computational Method
11(4)
1.3 Methods
15(4)
1.3.1 Absorbance and Fluorescence
15(1)
1.3.2 Fluorescence Quantum Yield
16(1)
1.3.3 Fluorescence Polarization
17(2)
1.4 Applications
19(4)
1.4.1 Fluorescence Enhancer of Mercury Detection
19(2)
1.4.2 Fluorescence Enhancer of Latent Fingerprints Detection
21(2)
1.5 Implementations
23(24)
1.5.1 Absorbance and Fluorescence
23(11)
1.5.2 Fluorescence Quantum Yield
34(4)
1.5.3 Fluorescence Polarization
38(2)
1.5.4 Fluorescence Enhancer of Mercury Detection
40(2)
1.5.5 Fluorescence Enhancer of Image Enhancement of Latent Fingerprints
42(5)
2 ZnO Nanoparticles
47(26)
2.1 Introduction
47(1)
2.2 Fabrications
48(1)
2.2.1 Nanolithography
48(1)
2.2.2 Laser Ablation
49(1)
2.3 Applications
49(9)
2.3.1 Biomedical Uses
49(3)
2.3.2 Industrial Uses
52(4)
2.3.3 Photovoltaic Uses
56(2)
2.4 Method
58(1)
2.5 Implementations
58(15)
2.5.1 ZnO Nanoparticles
58(6)
2.5.2 ZnO/Au Nanocomposites
64(4)
2.5.3 ZnO/Coumarin-153 Nanocomposites
68(5)
3 Fe304 Magnetic Nanoparticles
73(14)
3.1 Introduction
73(1)
3.2 Principle
73(2)
3.3 Fluorescence Resonance Energy Transfer
75(1)
3.4 Applications
76(2)
3.5 Implementations
78(9)
4 Organic Light-Emitting Diode
87(12)
4.1 Introduction
87(1)
4.2 Principle
88(1)
4.3 Methods
89(1)
4.4 Implementations
90(9)
4.4.1 White OLED
90(2)
4.4.1.1 Single host structures
92(1)
4.4.1.2 White OLED structures
93(2)
4.4.2 Blue OLED
95(4)
5 Pb-Fe-Shielded Material
99(20)
5.1 Introduction
99(1)
5.2 Gamma-Matter Interaction
99(3)
5.2.1 Compton Scattering
101(1)
5.2.2 Photoelectric Absorption
101(1)
5.2.3 Pair Production
101(1)
5.3 Computational Method
102(11)
5.3.1 Interpolation Method
104(2)
5.3.2 Optimization Model
106(3)
5.3.3 Contour Plot Method
109(4)
5.4 Implementation
113(6)
6 Probe Sensors
119(32)
6.1 Introduction
119(1)
6.2 Principle
119(11)
6.2.1 Turbid Tissue
119(1)
6.2.2 Reflection Probe
120(6)
6.2.3 Barcode Scanner
126(3)
6.2.4 Smart Cane
129(1)
6.3 Implementations
130(21)
6.3.1 Reflection Probe
130(11)
6.3.2 Barcode Scanner
141(3)
6.3.3 Smart Cane
144(7)
Part II Nonlinear Optics
7 Nonlinear Medium
151(8)
7.1 Introduction
151(1)
7.2 Component of Electric Fields
151(2)
7.3 Component of Magnetic Fields
153(2)
7.4 Classification of Nonlinear Medium
155(4)
8 Wave Propagation
159(10)
8.1 Introduction
159(1)
8.2 Polarization
159(1)
8.3 Wave Propagation in Nonlinear Medium
160(3)
8.4 Implementations
163(6)
8.4.1 Plane Wave Propagation in Nonlinear Medium at Normal Angle
163(1)
8.4.2 Plane Wave Propagation in Nonlinear Medium at a Tile Angle
164(5)
9 Second Harmonic Generation
169(50)
9.1 Introduction
169(1)
9.2 Second Harmonic Generation
169(16)
9.3 Realistic SHG
185(6)
9.4 Implementations
191(28)
9.4.1 Birefringence Phase Matching
191(3)
9.4.2 Effective Nonlinear Polarization
194(8)
9.4.3 Quasi-Phase Matching
202(6)
9.4.4 Spontaneous Polarization
208(11)
10 Other Frequency Mixing Processes
219(32)
10.1 Introduction
219(1)
10.2 Different Frequency Generation
219(10)
10.3 Sum Frequency Generation
229(4)
10.3.1 Sum Frequency Generation with Phase Matching
229(2)
10.3.2 Sum Frequency Generation without Phase Matching
231(2)
10.4 Optical Parametric Interactions
233(7)
10.4.1 Optical Parametric Amplification
233(5)
10.4.2 Optical Parametric Oscillation
238(2)
10.5 Optical Resonant Oscillator
240(11)
10.5.1 Single Resonant Oscillator
242(4)
10.5.2 Double Resonant Oscillator
246(5)
Suggested Readings 251(2)
Solutions to Problems 253(44)
Appendix A 297(12)
Appendix B 309(8)
Appendix C 317(12)
Index 329
Kitsakorn Locharoenrat is an associate professor at King Mongkuts Institute of Technology Ladkrabang, Thailand. He obtained his BS in chemical technology (1994) from Chulalongkorn University, Thailand; MS in processing technology (2000) from the Asian Institute of Technology, Thailand; and PhD in physical materials science (2007) from the Japan Advanced Institute of Science and Technology, Japan. He has authored or co-authored more than 50 articles in scientific journals and has authored two books and one book chapter. His current research focuses on the synthesis of nanomaterials, optical microscopy and spectroscopy, optical imaging, simulation, and instrumentation.