Atjaunināt sīkdatņu piekrišanu

E-grāmata: LLL Algorithm: Survey and Applications

Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Information Security and Cryptography
  • Izdošanas datums: 02-Dec-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642022951
  • Formāts - PDF+DRM
  • Cena: 237,34 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Information Security and Cryptography
  • Izdošanas datums: 02-Dec-2009
  • Izdevniecība: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Valoda: eng
  • ISBN-13: 9783642022951

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Computational aspects of geometry of numbers have been revolutionized by the Lenstra-Lenstra-Lovasz ' lattice reduction algorithm (LLL), which has led to bre- throughs in elds as diverse as computer algebra, cryptology, and algorithmic number theory. After its publication in 1982, LLL was immediately recognized as one of the most important algorithmic achievements of the twentieth century, because of its broad applicability and apparent simplicity. Its popularity has kept growing since, as testi ed by the hundreds of citations of the original article, and the ever more frequent use of LLL as a synonym to lattice reduction. As an unfortunate consequence of the pervasiveness of the LLL algorithm, researchers studying and applying it belong to diverse scienti c communities, and seldom meet. While discussing that particular issue with Damien Stehle ' at the 7th Algorithmic Number Theory Symposium (ANTS VII) held in Berlin in July 2006, John Cremona accuratelyremarkedthat 2007would be the 25th anniversaryof LLL and this deserveda meetingto celebrate that event. The year 2007was also involved in another arithmetical story. In 2003 and 2005, Ali Akhavi, Fabien Laguillaumie, and Brigitte Vallee ' with other colleagues organized two workshops on cryptology and algorithms with a strong emphasis on lattice reduction: CAEN '03 and CAEN '05, CAEN denoting both the location and the content (Cryptologie et Algori- miqueEn Normandie). Veryquicklyafterthe ANTSconference,AliAkhavi,Fabien Laguillaumie, and Brigitte Vallee ' were thus readily contacted and reacted very enthusiastically about organizing the LLL birthday conference. The organization committee was formed.

Recenzijas

From the reviews:

 

Tells the history of the LLL algorithm and paper. this helpful and useful volume is a welcome reference book that covers nearly all applications of lattice reduction.

[ Samuel S. Wagstaff, Jr., Mathematical Reviews, Issue 2011 m]

 

This book is a compilation of survey-cum-expository articles contributed by leading experts ... The LLL algorithm embodies the power of lattice reduction on a wide range of problems in pure and applied fields [ ... and] the success of LLL attests to the triumph of theory in computer science. This book provides a broad survey of the developments in various fields of mathematics and computer science emanating from the LLL algorithm. As well-known researchers in their areas, the authors present an invaluable perspective on the topics by sharing their insights and understanding. The book is an exemplar of the unity of computer science in bringing a broad array of concepts, tools and techniques to the study of lattice problems. The many open problems and questions stated in every chapter of the book will inspire researchers to explore the LLL algorithm and its variants further. Graduate students in computer science and mathematics and researchers in theoretical computer science will find this book very useful. Finally, it is simply a pleasure to read this lovely book.

[ Krishnan Narayanan, SIGACT News Book Review Column 45(4) 2014]

The History of the LLL-Algorithm
1(18)
Ionica Smeets
Hermite's Constant and Lattice Algorithms
19(52)
Phong Q. Nguyen
Probabilistic Analyses of Lattice Reduction Algorithms
71(74)
Brigitte Vallee
Antonio Vera
Progress on LLL and Lattice Reduction
145(34)
Claus Peter Schnorr
Floating-Point LLL: Theoretical and Practical Aspects
179(36)
Damien Stehle
LLL: A Tool for Effective Diophantine Approximation
215(50)
Guillaume Hanrot
Selected Applications of LLL in Number Theory
265(18)
Denis Simon
The van Hoeij Algorithm for Factoring Polynomials
283(10)
Jurgen Kluners
The LLL Algorithm and Integer Programming
293(22)
Karen Aardal
Friedrich Eisenbrand
Using LLL-Reduction for Solving RSA and Factorization Problems
315(34)
Alexander May
Practical Lattice-Based Cryptography: NTRUEncrypt and NTRUSign
349(42)
Jeff Hoffstein
Nick Howgrave-Graham
Jill Pipher
William Whyte
The Geometry of Provable Security: Some Proofs of Security in Which Lattices Make a Surprise Appearance
391(36)
Craig Gentry
Cryptographic Functions from Worst-Case Complexity Assumptions
427(26)
Daniele Micciancio
Inapproximability Results for Computational Problems on Lattices
453(22)
Subhash Khot
On the Complexity of Lattice Problems with Polynomial Approximation Factors
475
Oded Regev