Atjaunināt sīkdatņu piekrišanu

E-grāmata: Local Electrode Atom Probe Tomography: A User's Guide

  • Formāts: PDF+DRM
  • Izdošanas datums: 12-Dec-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461487210
  • Formāts - PDF+DRM
  • Cena: 177,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 12-Dec-2013
  • Izdevniecība: Springer-Verlag New York Inc.
  • Valoda: eng
  • ISBN-13: 9781461487210

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The first single-source reference to all the major features of LEAP tomography, this volume includes a wealth of practical tips and covers all four core aspects of a LEAP tomography experiment from start to finish, as well as the software methods employed.



This book is the first, single-source guide to successful experiments using the local electrode atom probe (LEAP®) microscope. Coverage is both comprehensive and user friendly, including the fundamentals of preparing specimens for the microscope from a variety of materials, the details of the instrumentation used in data collection, the parameters under which optimal data are collected, the current methods of data reconstruction, and selected methods of data analysis. Tricks of the trade are described that are often learned only through trial and error, allowing users to succeed much more quickly in the challenging areas of specimen preparation and data collection. A closing chapter on applications presents selected, state-of-the-art results using the LEAP microscope.
1 History of APT and Leap
1(24)
1.1 Introduction
1(1)
1.2 Ancestry of the Local Electrode Atom Probe
2(12)
1.2.1 Early History and the Field Electron Emission Microscope (~1935)
3(1)
1.2.2 Field Ion Microscope: The First Images of Atoms (1955)
4(2)
1.2.3 Atom Probe Field Ion Microscope (1967)
6(1)
1.2.4 The Advent of Atom Probe Tomography
7(1)
1.2.5 The Position-Sensitive Atom Probe (1988)
8(2)
1.2.6 Electron Beam Pulsed Atom Probe
10(1)
1.2.7 The Scanning Atom Probe
10(1)
1.2.8 The Local Electrode Atom Probe (2001)
10(4)
1.3 The State of Instrumentation
14(5)
1.3.1 The Growth of the Local Electrode Atom Probe
14(1)
1.3.2 Laser Pulsing
15(2)
1.3.3 Fundamental Considerations for Design of Instrumentation
17(1)
1.3.4 Reflectron-Based Instruments
18(1)
1.4 FIB-Based Specimen Preparation
19(1)
1.5 Concluding Remarks
19(6)
References
20(5)
2 Specimen Preparation
25(30)
2.1 Introduction
25(1)
2.2 Electropolishing
25(4)
2.3 Needles Versus Microtips
29(1)
2.4 Electrostatic Discharge Considerations
30(2)
2.5 Focused Ion Beam Methods
32(13)
2.5.1 Capping Considerations and Damage
33(3)
2.5.2 Standard Lift-Out Process
36(2)
2.5.3 Sharpening Process
38(2)
2.5.4 FIB Deprocessing
40(1)
2.5.5 Cross-Section Preparation
40(3)
2.5.6 Backside Preparation
43(2)
2.6 Hybrid Transmission Electron Microscopy/Atom Probe Tomography
45(4)
2.6.1 Preparation and Holders
47(2)
2.7 Summary
49(6)
References
50(5)
3 Design and Instrumentation
55(24)
3.1 Introduction
55(1)
3.2 How Atom Probes Work
55(3)
3.3 LEAP Performance Parameters
58(3)
3.3.1 Field of View
58(1)
3.3.2 Mass Resolving Power
59(1)
3.3.3 Data Collection Rate
60(1)
3.3.4 Model Comparison
61(1)
3.4 Instrumentation of the LEAP
61(14)
3.4.1 Local Electrode
61(5)
3.4.2 Detection and Imaging
66(3)
3.4.3 Transfer and Storage of Consumables
69(3)
3.4.4 Field Evaporation Systems
72(1)
3.4.5 Ancillary Systems
73(2)
3.5 Summary
75(4)
References
76(3)
4 Data Collection
79(30)
4.1 Introduction
79(1)
4.2 Data Quality Considerations
80(1)
4.3 Analysis Yield Considerations
81(4)
4.4 Experimental Parameters
85(6)
4.4.1 Pulse Rate
86(1)
4.4.2 Base Temperature
86(3)
4.4.3 Detection Rate
89(1)
4.4.4 Pulse Fraction (Voltage Mode)
89(1)
4.4.5 Laser Pulse Energy (Laser Mode)
90(1)
4.4.6 LEAP Parameter Ranges
90(1)
4.5 How to Start Your Investigation of Any New Material
91(1)
4.6 Brief Overview of LEAP Operation: Data Collection
92(17)
4.6.1 Voltage Acquisition
93(5)
4.6.2 Laser Acquisition
98(7)
4.6.3 Now You Are Atom Probing
105(2)
References
107(2)
5 Data Processing and Reconstruction
109(54)
5.1 Introduction
109(1)
5.2 A Word on Data Files and Work Flow
110(1)
5.3 Conversion from Detector Space to Specimen Space Coordinates
110(21)
5.3.1 Selection of Depth and Areal Regions
111(1)
5.3.2 Spectral Calibration
112(5)
5.3.3 Chemical Identification & Ranging
117(3)
5.3.4 Spatial Reconstruction: Projection and Depth Scaling
120(1)
5.3.5 Wide-Angle Reconstruction Protocols
121(6)
5.3.6 Tangential Discontinuity
127(1)
5.3.7 Reconstruction Explorer
128(2)
5.3.8 Creation of ROOT and POS Files
130(1)
5.4 Discussion of Spatial Resolution and Spatial Positioning
131(11)
5.4.1 Spatial Resolution
131(1)
5.4.2 Spatial Positioning (Non-specimen Dependent)
131(3)
5.4.3 Spatial Positioning (Specimen Dependent)
134(8)
5.5 A Word on Density Relaxation
142(3)
5.6 Reconstruction Case Study: NIST Standard Reference Material 2134
145(18)
5.6.1 Reconstruction Parameter Discussion
145(4)
5.6.2 Experiment and Analysis Details
149(10)
References
159(4)
6 Selected Analysis Topics
163(38)
6.1 Introduction
163(1)
6.2 Spectral Analysis
164(9)
6.2.1 Ranging
164(2)
6.2.2 Practical Considerations for Detection Levels
166(1)
6.2.3 When Is the Signal Level Statistically Significant (Critical Level) for a Peak?
167(6)
6.3 Concentration Space Analyses
173(7)
6.3.1 Gridding, Voxels, and Delocalization
173(2)
6.3.2 Interface Creation and Interfacial Roughness
175(1)
6.3.3 Effects of Delocalization on Planar Surfaces
176(2)
6.3.4 The Proximity Histogram
178(2)
6.4 Solute Analysis: Cluster Detection Method
180(5)
6.4.1 Description of the Technique
180(2)
6.4.2 Example of Cluster Detection
182(3)
6.5 Spatial Distribution Maps
185(6)
6.5.1 The SDM Defined and Important Properties
186(1)
6.5.2 Methods Similar to the SDM
186(1)
6.5.3 Understanding Basic SDMs
187(1)
6.5.4 Calculating SDMs in IVAS
188(1)
6.5.5 Visualizing Tungsten SDMs with IVAS
189(2)
6.6 Application of Spatial Distribution Maps
191(10)
6.6.1 Finding the Crystal Lattice
191(1)
6.6.2 Using SDMs to Calculate Efficiency
192(3)
6.6.3 Ordered Structures and Site Occupancy
195(1)
6.6.4 Ordering in Al3Sc Precipitates
195(1)
6.6.5 FeCr Precipitates in a NiAlFeCr Alloy
195(1)
6.6.6 Site Occupancy of Nb in TiAl
196(1)
References
197(4)
7 Applications of the Local Electrode Atom Probe
201(48)
7.1 Metals
202(5)
7.1.1 Ordered Alloy
202(1)
7.1.2 Site Occupancy in Precipitates in Aluminum Alloys
203(1)
7.1.3 Imaging Nanovoids
203(1)
7.1.4 Intergranular Attack in Ni-Base Superalloy
204(3)
7.2 Catalytic Materials
207(3)
7.2.1 Ex Situ Analysis of CoCuMn Nanoparticles
207(2)
7.2.2 In Situ Analysis of Pd--Rd and Pt--Rh--Ru Catalysts
209(1)
7.3 Ceramic and Geological Materials
210(8)
7.3.1 CeO2 as a Model for Nuclear Fuel
210(3)
7.3.2 Zircons
213(1)
7.3.3 Extrasolar Nanodiamonds
214(2)
7.3.4 Ferroelectrics/Piezoelectrics
216(2)
7.4 Semiconductor Materials
218(9)
7.4.1 Group IV Semiconductors (Silicon and Germanium)
218(4)
7.4.2 Compound Semiconductors
222(5)
7.5 Organics and Biological Materials
227(6)
7.5.1 Synthetic Polymers
230(1)
7.5.2 Chiton Teeth
231(1)
7.5.3 Ferritin
232(1)
7.6 Composite Structures/Devices
233(8)
7.6.1 Metal--Oxide Interfaces
234(1)
7.6.2 MOSFET Structures
234(1)
7.6.3 FinFET Structures
235(2)
7.6.4 Commercial Devices Analysis; Intel i5
237(4)
7.7 Conclusions
241(8)
References
241(8)
Appendix A Data File Formats 249(8)
Appendix B Field Evaporation 257(10)
Appendix C Reconstruction Geometry 267(14)
Appendix D Mass Spectral Performance 281(8)
Appendix E Additional Considerations for LEAP Operation 289(16)
Glossary 305(10)
Index 315