Atjaunināt sīkdatņu piekrišanu

E-grāmata: Local Homotopy Theory

Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 130,27 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This monograph on the homotopy theory of topologized diagrams of spaces and spectra gives an expert account of a subject at the foundation of motivic homotopy theory and the theory of topological modular forms in stable homotopy theory.

Beginning with an introduction to the homotopy theory of simplicial sets and topos theory, the book covers core topics such as the unstable homotopy theory of simplicial presheaves and sheaves, localized theories, cocycles, descent theory, non-abelian cohomology, stacks, and local stable homotopy theory. A detailed treatment of the formalism of the subject is interwoven with explanations of the motivation, development, and nuances of ideas and results. The coherence of the abstract theory is elucidated through the use of widely applicable tools, such as Barr's theorem on Boolean localization, model structures on the category of simplicial presheaves on a site, and cocycle categories. A wealth of concrete examples convey the vitality and importance of the subject in topology, number theory, algebraic geometry, and algebraic K-theory.

Assuming basic knowledge of algebraic geometry and homotopy theory, Local Homotopy Theory will appeal to researchers and advanced graduate students seeking to understand and advance the applications of homotopy theory in multiple areas of mathematics and the mathematical sciences.

1 Introduction
1(1)
Part I Preliminaries
2(57)
2 Homotopy Theory of Simplicial Sets
15(14)
2.1 Simplicial Sets
15(6)
2.2 Model Structure for Simplicial Sets
21(4)
2.3 Projective Model Structure for Diagrams
25(4)
3 Some Topos Theory
29(30)
3.1 Grothendieck Topologies
31(7)
3.2 Exactness Properties
38(4)
3.3 Geometric Morphisms
42(4)
3.4 Points
46(3)
3.5 Boolean Localization
49(10)
Part II Simplicial Presheaves and Simplicial Sheaves
4 Local Weak Equivalences
59(32)
4.1 Local Weak Equivalences
60(9)
4.2 Local Fibrations
69(8)
4.3 First Applications of Boolean Localization
77(14)
5 Local Model Structures
91(48)
5.1 The Injective Model Structure
93(7)
5.2 Injective Fibrations
100(7)
5.3 Geometric and Site Morphisms
107(9)
5.4 Descent Theorems
116(10)
5.5 Intermediate Model Structures
126(5)
5.6 Postnikov Sections and n-Types
131(8)
6 Cocycles
139(20)
6.1 Cocycle Categories
142(8)
6.2 The Verdier Hypercovering Theorem
150(9)
7 Localization Theories
159(32)
7.1 General Theory
161(13)
7.2 Localization Theorems for Simplicial Presheaves
174(11)
7.3 Properness
185(6)
Part III Sheaf Cohomology Theory
8 Homology Sheaves and Cohomology Groups
191(56)
8.1 Chain Complexes
194(8)
8.2 The Derived Category
202(5)
8.3 Abelian Sheaf Cohomology
207(16)
8.4 Products and Pairings
223(4)
8.5 Localized Chain Complexes
227(8)
8.6 Linear Simplicial Presheaves
235(12)
9 Non-abelian Cohomology
247(90)
9.1 Torsors
251(16)
9.2 Stacks and Homotopy Theory
267(13)
9.3 Groupoids Enriched in Simplicial Sets
280(24)
9.4 Presheaves of Groupoids Enriched in Simplicial Sets
304(14)
9.5 Extensions and Gerbes
318(19)
Part IV Stable Homotopy Theory
10 Spectra and T-spectra
337(94)
10.1 Presheaves of Spectra
344(16)
10.2 T-spectra and Localization
360(8)
10.3 Stable Model Structures for T-spectra
368(15)
10.4 Shifts and Suspensions
383(8)
10.5 Fibre and Cofibre Sequences
391(14)
10.6 Postnikov Sections and Slice Filtrations
405(7)
10.7 T-Complexes
412(19)
11 Symmetric T-spectra
431(68)
11.1 Symmetric Spaces
436(5)
11.2 First Model Structures
441(6)
11.3 Localized Model Structures
447(4)
11.4 Stable Homotopy Theory of Symmetric Spectra
451(10)
11.5 Equivalence of Stable Categories
461(11)
11.6 The Smash Product
472(11)
11.7 Symmetric T-complexes
483(16)
References 499(6)
Index 505
J. F. Jardine is Canada Research Chair and Professor of Mathematics at the University of Western Ontario. He is the author of Generalized Etale Cohomology Theories and Simplicial Homotopy Theory (with P. Goerss).