Atjaunināt sīkdatņu piekrišanu

E-grāmata: Long-lived Proteins in Human Aging and Disease

  • Formāts: EPUB+DRM
  • Izdošanas datums: 28-Jan-2021
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527826742
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 124,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: EPUB+DRM
  • Izdošanas datums: 28-Jan-2021
  • Izdevniecība: Blackwell Verlag GmbH
  • Valoda: eng
  • ISBN-13: 9783527826742
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"While most proteins in the human body are short-lived and are constantly being regenerated, this is not true for all. A significant fraction of proteins in long-lived cells such as nerve cells are likewise long-lived and will age over time by accumulating damage and other modifications. Scientists are only beginning to understand how this aging of long-lived proteins contributes to age-dependent diseases such as dementia and cancer Divided into six major sections, this comprehensive overview on an emerging topic in the molecular life sciences covers all aspects of the aging of (long-lived) proteins. Analytical methods to study protein half-life and the accumulation of modifications are presented, followed by several examples of long-lived proteins foundin humans and other organisms. Next, the molecular mechanisms of aging on the protein level are described, in particular the most common side chain modifications, followed by a discussion of the consequences of protein aging on cellular and organ function. Finally, the impact of protein aging on several age-related disases in humans is dissected, and their role in limiting human lifespan is discussed"--

This authoritative overview on an emerging topic in the molecular life sciences covers all aspects of the aging of (long-lived) proteins. It describes the molecular mechanisms of aging on the protein level, in particular the most common side chain modifications and includes analytical methods to study protein half-life and the accumulation of modifications. Finally, the impact of protein aging on several age-related disases in humans is dissected, and their role in limiting human lifespan is discussed.
Introduction to the Book 1(1)
Long-Lived Proteins Are Ubiquitous 1(1)
Aging 1(1)
Autoimmunity 2(1)
Age-Related Diseases 3(1)
Our Lenses in the Vanguard 3(1)
Brain and Memory 4(1)
1 Long-Lived Cells And Long-Lived Proteins In The Human Body
5(38)
Roger J. W. Truscott
1.1 What Constitutes a Long-Lived Cell and a Long-Lived Protein?
5(1)
1.2 Aim of the
Chapter
6(1)
1.3 Aging
6(1)
1.4 Location of LLPs Within the Body
7(1)
1.4.1 ECM and Tissue Function
7(1)
1.5 Extracellular LLPs
7(3)
1.5.1 Several ECM Components Are Long Lived
7(1)
1.5.1.1 Elastin
7(1)
1.5.1.2 Structural Glycoproteins and Proteoglycans
8(1)
1.5.1.3 Collagens
8(2)
1.6 Intracellular LLPs and LLCs
10(1)
1.6.1 LLCs and LLPs in the Organs of the Body
10(1)
1.7 Organs and Tissues that Contain LLCs or LLPs
11(10)
1.7.1 Long-Lived Cells
11(1)
1.7.1.1 Eye
11(3)
1.7.1.2 Oocytes
14(1)
1.7.1.3 Kidneys
15(1)
1.7.1.4 Adipose Tissue
15(1)
1.7.1.5 Brain
15(2)
1.7.1.6 Heart
17(1)
1.7.1.7 Lung
17(1)
1.7.1.8 Skeleton
18(1)
1.7.1.9 Teeth
18(1)
1.7.1.10 Hair
18(1)
1.7.1.11 Joints
19(1)
1.7.1.12 Pancreas
19(1)
1.7.1.13 Liver
20(1)
1.7.1.14 Intestine
20(2)
1.7.1.15 Dividing Cells and LLPs
22(1)
1.7.2 Sensory Tissues
22(1)
1.7.2.1 Hearing
22
1.7.2.2 Smell
21(1)
1.8 Protein Changes and DNA Changes with Age
21(1)
1.9 Processes Responsible for the Breakdown of LLPs
22(1)
1.10 Oxidation: Methionine Sulfoxide Reductases and the Glutathione System
23(1)
1.11 Consequences of LLP Decomposition
24(1)
1.11.1 Protein Modification and Cellular Processing
24(1)
1.11.2 Lifelong Proteins and the Consequences
24(1)
1.12 LLPs and Age-Related Disorders
25(2)
1.12.1 Modified LLPs Acting as Novel Antigens: Autoimmune Diseases
25(1)
1.12.2 Defects in Cytosol/Nuclear Communication
25(1)
1.12.3 Defects in Nuclear Transcription
26(1)
1.12.4 Breakdown of Abundant Macromolecules
26(1)
1.12.5 Elastin
26(1)
1.12.6 Collagen
26(1)
1.13 Neurological Diseases Where LLPs May be Implicated
27(1)
1.13.1 Multiple Sclerosis
27(1)
1.13.2 Motor Neuron Disease (MND)/Amyotrophic Lateral Sclerosis (ALS)
27(1)
1.13.3 Alzheimer Disease (AD)
27(1)
1.14 Aging DNA and LLPs
28(1)
1.15 How Can the Role of LLPs in Aging and Disease Be Investigated? What Can Be Done
28(1)
1.15.1 Heterogeneity of Aged LLPs: A Large Hurdle to Overcome
29(1)
1.16 We Will Not Live Forever
29(4)
1.16.1 LLP Degradation and Tissue Function: Is There a Threshold for Decay?
30(1)
1.16.2 Lifelong Proteins May Degrade at Similar Rates
30(2)
1.16.3 Decay in Tissue Function with Age and Its Effect on Fitness, Health, and Mortality
32(1)
1.16.4 LLPs and Life Span
32(1)
1.16.5 Heart
32(1)
1.16.6 Lung
33(1)
1.16.7 Nerves and Brain
33(1)
1.17 Conclusion
33(10)
Acknowledgments
33(1)
References
33(10)
2 Imaging Mass Spectrometry Of Long-Lived Proteins
43(16)
Kevin L. Schey
2.1 Introduction
43(1)
2.2 Imaging Mass Spectrometry Methods
44(3)
2.2.1 General Considerations
44(1)
2.2.2 MALDI-IMS
44(2)
2.2.3 Desorption Electrospray Ionization (DESI)-IMS
46(1)
2.2.4 Secondary Ion Mass Spectrometry (SIMS)-IMS
46(1)
2.2.5 Other IMS Methods
46(1)
2.3 Protein Identification
47(1)
2.4 LLPs in the Body
48(5)
2.4.1 Lens
48(3)
2.4.2 Optic Nerve
51(1)
2.4.3 Retina
52(1)
2.4.4 Brain and CNS
52(1)
2.4.5 Cartilage
53(1)
2.5 Long-Lived Cells and Structures
53(1)
2.6 Future Directions
54(5)
References
54(5)
3 Eye Lens Crystallins: Remarkable Long-Lived Proteins
59(38)
Aidan B. Grosas
John A. Carver
3.1 Introduction
59(1)
3.2 Eye Lens and Its Transparency
59(2)
3.3 Lens Crystallin Proteins
61(4)
3.3.1 a-Crystallins
61(2)
3.3.2 p-and y-Crystallins
63(2)
3.4 Congenital, Early Onset, and Age-Related Cataract
65(6)
3.5 Protein Aggregation and Disease, Particularly Cataract
71(6)
3.5.1 Protein Unfolding and Aggregation and Molecular Chaperones
71(2)
3.5.2 Amyloid Fibril and Amorphous Protein Aggregates
73(1)
3.5.3 Diseases Associated with Protein Aggregation
74(1)
3.5.4 Crystallin Aggregation and Cataract
75(2)
3.6 Concluding Comments
77(20)
References
78(19)
4 Spontaneous Breakdown Of Long-Lived Proteins In Aging And Their Implications In Disease
97(30)
Michael G. Friedrich
4.1 Introduction
97(1)
4.2 LLPs Are Found Throughout the Body
98(1)
4.3 Spontaneous Modifications of Aging
99(6)
4.3.1 Deamidation, Racemization, and Isomerization
99(2)
4.3.2 Cross-linking
101(1)
4.3.3 Truncation
102(1)
4.3.4 Age, Disease, and Spontaneous PTMs: General Considerations
103(2)
4.4 LLPs and Onset of Disease: Is Correlation the Only Answer?
105(8)
4.4.1 Eye
106(1)
4.4.1.1 Lens and Age-Related Nuclear Cataract
106(2)
4.4.1.2 Retina, Vitreous Humor, and Sclera
108(1)
4.4.2 Central Nervous System
108(1)
4.4.2.1 Multiple Sclerosis
109(1)
4.4.2.2 Alzheimer's Disease
109(1)
4.4.2.3 Parkinson's Disease
110(1)
4.4.2.4 Amyotrophic Lateral Sclerosis/Motor Neuron Disease
110(1)
4.4.2.5 Systemic Lupus Erythematosus
111(1)
4.4.3 Extracellular Matrix Proteins
111(1)
4.4.3.1 Articular Cartilage, Intervertebral Disc, and Osteoarthritis
112(1)
4.4.3.2 Circulatory System
112(1)
4.4.3.3 Respiratory System
112(1)
4.4.4 Digestive System
112(1)
4.4.4.1 Diabetes
113(1)
4.5 Spontaneous Modifications: Detrimental or Beneficial?
113(1)
4.5.1 NGR Motifs
113(1)
4.5.2 Bcl-xl
113(1)
4.6 Protein Turnover Slows with Age
113(1)
4.7 Potential Treatment of Diseases Initiated by LLPs
114(1)
4.8 Future Outlook
114(13)
Acknowledgments
115(1)
References
115(12)
5 Modifications Of Long-Lived Proteins That Affect Protein Solubility
127(32)
Larry L. David
5.1 Introduction
127(1)
5.2 Insoluble Protein Definition
128(1)
5.3 Insolubilization Due to Disulfide Bonding
128(2)
5.3.1 Disulfide Bonding Is Strongly Correlated with Age-Related Cataracts
128(1)
5.3.2 Levels of Disulfide Bonding at Individual Cysteines in Cataractous Lenses
129(1)
5.3.3 Identity of Individual Disulfide Cross-links in Crystallins of Aged Lenses
129(1)
5.4 Insolubilization Due to Nondisulfide Cross-links
130(1)
5.4.1 Cross-links Due to Dehydroalanine Formation
130(1)
5.4.2 Cross-links Due to C-Terminal Anhydrides
130(1)
5.5 Insolublization Due to Protein Fragmentation
131(1)
5.5.1 Introduction: Protein Hydrolysis and Insolubilization
131(1)
5.5.2 Proteolysis as a Driver of Protein Insolublization in Animal Lenses
131(1)
5.5.3 Nonenzymatic Hydrolysis as a Driver of Protein Insolublization in Human Lenses
131(1)
5.6 Insolublization Due to Deamidation, Isomerization, and Racemization
132(1)
5.7 In vitro Studies of How PTMs Alter Protein Structure and Solubility
133(2)
5.7.1 In vitro Studies of Disulfide Bonding
133(2)
5.7.2 In Vitro Studies of Deamidation
135(1)
5.8 Proteomics Methods to Detect Post-translation Modifications Contributing to Protein Insolublization
135(10)
5.8.1 Crystallins as Ideal Proteins to Detect Age-Related PTMs
135(1)
5.8.2 Two-Dimensional Liquid Chromatography/Mass Spectrometry to Detect PTMs
136(1)
5.8.3 Searches for Known PTMs
136(1)
5.8.4 Searches for Unknown PTMs
137(1)
5.8.5 Identifying Disulfide Cross-links
138(1)
5.8.6 Identifying Deamidation Sites
139(3)
5.8.7 Identifying Isomerization Sites
142(1)
5.8.8 Identifying Racemization Sites
143(2)
5.8.9 Peptide Standards to Study Deamidation, Isomerization, and Racemization
145(1)
5.9 Future PTM Studies of Long-Lived Proteins
145(3)
5.10 Concluding Remarks
148(11)
Acknowledgments
150(1)
References
150(9)
6 Degradation Of Long-Lived Proteins As A Cause Of Autoimmune Diseases
159(16)
Roger J. W. Truscott
6.1 Introduction
159(1)
6.1.1 Background
159(1)
6.1.2 Autoimmunity: Long-Lived Proteins and Long-Lived Cells
159(1)
6.1.3 Focus of this
Chapter
159(1)
6.2 Long-Lived Cells Are Widespread in the Body
160(1)
6.3 Long-Lived Proteins Are Present in Many Tissues
160(1)
6.4 Long-Lived Proteins Decompose Over Time
161(1)
6.5 Defenses Against LLP Decomposition
162(1)
6.5.1 Rebuilding Degraded Asp and Asn Sites Within a Protein
162(1)
6.5.2 Oxidation-Related Modification Repair Enzymes and Antioxidants
163(1)
6.6 Consequences of Long-Lived Protein Decomposition
163(2)
6.7 Individual Autoimmune Diseases
165(3)
6.7.1 Pancreas
165(1)
6.7.2 Nerves
165(1)
6.7.3 Stomach
166(1)
6.7.4 Bloodvessels
166(1)
6.7.5 Gastrointestinal Tract
166(1)
6.7.6 Liver
166(1)
6.7.7 Thyroid Gland
166(1)
6.7.8 Adrenal Gland
166(1)
6.7.9 Joints
167(1)
6.7.10 Multiple Sites
167(1)
6.7.11 Skin
167(1)
6.7.12 Moisture-Secreting Glands
167(1)
6.7.13 Blood
167(1)
6.7.14 Muscles
168(1)
6.7.15 Heart
168(1)
6.8 Person-to-Person Variability in Breakdown of LLPs: Multiple Sclerosis
168(1)
6.8.1 Why Do Not All Adults Develop Autoimmune Disorders?
168(1)
6.8.2 Widespread LLPs and Modulation of an Immune Response
169(1)
6.9 Conclusions and Future Research
169(6)
Acknowledgments
170(1)
References
170(5)
7 How Isomerization And Epimerization In Long-Lived Proteins Affect Lysosomal Degradation And Proteostasis
175(14)
Ryan R. Julian
7.1 Proteostasis
175(1)
7.2 Invisible Modifications
176(3)
7.3 Repair
179(1)
7.4 Identification
180(1)
7.5 Protein Turnover
180(1)
7.6 Mechanistic Considerations
181(1)
7.7 Prevention
182(2)
7.8 Conclusion
184(5)
Acknowledgments
184(1)
References
184(5)
8 The Maillard Reaction: Protein Modification By Ascorbic Acid
189(14)
Vincent M. Monnier
David R. Sell
Grant Horn
Shiyuan Dong
Benlian Wang
Xingjun Fan
8.1 Introduction
189(1)
8.2 Ascorbic Acid Homeostasis in the Lens: A Dual Sword
190(1)
8.3 Ascorbic Acid as a Source of Age-Related Damage to the Lens
190(2)
8.4 Chemical Pathways of Ascorbic Acid Degradation In Vitro and the Human Lens J9J
8.5 Advanced Glycation End Products that have been Detected in the Human Lens
192(1)
8.6 Glucose vs. Ascorbic Acid as a Source of Advanced Glycation End Products in the Lens
193(2)
8.7 Ascorbic Acid as a Major Source of Oxoaldehydes in Lens and Brain
195(1)
8.8 Significance of Advanced Glycation/Ascorbylation Products in the Lens and Brain
196(1)
8.9 Conclusions
197(6)
Acknowledgments
197(1)
References
197(6)
Index 203
Roger J. W. Truscott, PhD, is Research Professor at the Illawarra Health and Medical Research Institute at the University of Wollongong. He received his doctorate from Melbourne University and has authored over 200 scientific publications, mainly in the fields of human aging and age-related diseases. A former NHMRC senior research follow, he is the recipient of the National Foundation for Eye Research (USA) Cataract Research Award.