Atjaunināt sīkdatņu piekrišanu

E-grāmata: Longitudinal Network Models

  • Formāts - EPUB+DRM
  • Cena: 34,49 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Although longitudinal social network data are increasingly collected, there are few guides on how to navigate the range of available tools for longitudinal network analysis. The applied social scientist is left to wonder: Which model is most appropriate for my data? How should I get started with this modeling strategy? And how do I know if my model is any good? This book answers these questions. Author Scott Duxbury assumes that the reader is familiar with network measurement, description, and notation, and is versed in regression analysis, but is likely unfamiliar with statistical network methods. The goal of the book is to guide readers towards choosing, applying, assessing, and interpreting a longitudinal network model, and each chapter is organized with a specific data structure or research question in mind. A companion website includes data and R code to replicate the examples in the book.

Recenzijas

A brilliant how to for modelling dynamic network data. An exquisite balance of model intuition, assumptions and practical advice, accessible to all network / data scientists. -- Alexander John Bond This is a very timely book that provides critical skills for conducting explanatory analysis of longitudinal social network data. Both beginners, and advanced analysts can benefit from reading this book as it provides many real life examples, illustrating computational processes, interpreting results, and even furnishing R codes. For those who aspire to learn advanced topics in analyzing longitudinal social network data, this is a must-have book. -- Song Yang This book presents the state-of-art of longitudinal network analysis. It is comprehensive while staying concise, well structured, and clearly written. Definitely a moneyball in the field! -- Weihua An

Series Editor's Introduction xi
Acknowledgments xiii
About the Author xv
1 Introduction
1(13)
What This Book Covers
2(1)
What This Book Does Not Cover
2(1)
The Path Ahead
2(1)
What Are Longitudinal Network Data?
3(3)
Modeling Capabilities
6(2)
Why Not Standard Regression?
8(2)
Theoretical Issues
10(3)
Summary
13(1)
Accompanying Website
13(1)
2 Temporal Exponential Random Graph Models
14(29)
What Are Network Panel Data?
14(2)
The Cross-Sectional ERGM
16(2)
Temporal Exponential Random Graph Models (TERGM)
18(1)
The Intuition
19(1)
Assumptions
20(1)
Model Specification
20(4)
Example 2.1 A TERGM Analysis of Friendship Formation Among Dutch College Students
24(15)
Other Modeling Considerations
39(3)
Conclusion
42(1)
3 Stochastic Actor-Oriented Models
43(25)
The Stochastic Actor-Oriented Model (SAOM)
43(2)
The Intuition
45(1)
Assumptions
46(1)
Model Specification
47(2)
Example 3.1 An Actor-Oriented Analysis of Friendship Formation Among Dutch College Students
49(10)
Other Modeling Considerations
59(4)
Model Extensions
63(1)
Selecting a Network Panel Model
63(4)
Conclusion
67(1)
4 Modeling Relational Event Data
68(24)
What Are Relational Event Data?
69(1)
The Relational Event Model (REM)
69(2)
The Intuition
71(1)
Assumptions
72(1)
Model Specification
73(2)
Example 4.1 Illegal Drug Trade on the Dark Web
75(6)
Other Modeling Considerations
81(4)
Model Extensions
85(2)
An Alternative: The Dynamic Network Actor Model
87(3)
When to Use REM?
90(1)
Conclusion
91(1)
5 Network Influence Models
92(30)
What Do Network Influence Data Look Like?
93(1)
The Temporal Network Autocorrelation Model (TNAM)
94(1)
The Intuition
95(1)
Assumptions
96(1)
Model Specification
97(2)
Example 5.1 A Network Influence Model of Adolescent Smoking Behavior
99(3)
Other Modeling Considerations
102(3)
Coevolution Models: SAOM for Behavioral and Network Change
105(3)
The Intuition
108(1)
Assumptions
109(1)
Model Specification
110(1)
Example 5.2 A Coevolution Influence Model of Adolescent Drinking Behavior
111(7)
An Alternative Approach: Simulating Network Diffusion
118(1)
How Should We Think About Network Influence?
119(2)
Conclusion
121(1)
6 Conclusion
122(6)
Missing Data
122(1)
Measurement Error
123(1)
Interpretation
124(1)
Causal Inference
125(1)
Models for Relational Event Data
126(1)
Unobserved Heterogeneity in Network Panel Models
126(1)
Scalability
127(1)
Conclusion 128(1)
References 129(9)
Index 138
Scott Duxbury is an Assistant Professor of Sociology at the University of North Carolina at Chapel Hill. His research examines drug markets, criminal networks, quantitative and computational methods, public opinion, punishment, racism, and the criminal justice system. It has appeared in American Sociological Review, American Journal of Sociology, and Social Forces, among other outlets. Scotts book, Longitudinal Network Models, provides an introductory text to the suite of statistical models available for longitudinal network data analysis.