Atjaunināt sīkdatņu piekrišanu

E-grāmata: Low Electromagnetic Emission Wireless Network Technologies: 5G and beyond

Edited by (University of Glasgow, UK), Edited by (University of Glasgow, UK), Edited by (University of Surrey, Institute for Communication Systems (ICS), UK)
  • Formāts: EPUB+DRM
  • Sērija : Telecommunications
  • Izdošanas datums: 18-Dec-2019
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781785618499
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 194,11 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Telecommunications
  • Izdošanas datums: 18-Dec-2019
  • Izdevniecība: Institution of Engineering and Technology
  • Valoda: eng
  • ISBN-13: 9781785618499
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Mobile communication systems rely on radiofrequency waves to operate. Given the popularity and ubiquity of mobile communication devices as well as network densification, the level of Electromagnetic Field (EMF) exposure to the public is expected to rise significantly over the next few years. Although there is no clear evidence linking short-term exposure to EMF emission from wireless communication systems with adverse health effects, the International Agency for Research on Cancer (IARC) has concluded that EMF radiation is possibly carcinogenic. To cope with the concerns of the general public, the European Environmental Agency has recommended non-technical precautionary approaches to minimize exposure to EMF emissions. Rather than relying on these non-technical approaches, EMF, latency, network resilience and connection density, alongside traditional criteria such as spectral efficiency and energy efficiency are expected to take centre stage in the development of 5G systems.

This book focuses on innovative EMF exposure research for future generations of mobile and wireless communications. This timely publication highlights the novel work done on reducing EMF emissions in future mobile communication systems and how to develop smart integrated technical solutions.



This book focuses on innovative EMF exposure research for future generations of mobile and wireless communications. This timely publication highlights the novel work done on reducing EMF emissions in future mobile communication systems and how to develop smart integrated technical solutions.

About the editors xiii
Preface xv
Part I EMF evaluation and characterisation
1(140)
1 EMF exposure definition, metrics, effects and regulations
3(20)
Yusuf A. Sambo
Muhammad Ali Jamshed
Fabien Heliot
Tim Brown
Muhammad Ali Imran
1.1 Scope
3(1)
1.2 Factors contributing to EM exposure in mobile communications
4(3)
1.2.1 Communication network topology
4(2)
1.2.2 Location of the user relative to the BS
6
1.2.3 Duration of exposure
5(2)
1.3 EM radiation and RF communication spectrum range
7
1.4 EM radiation metrics
3(7)
1.4.1 Near field and SAR
8(2)
1.4.2 Far field and power density
10(1)
1.5 EM exposure index
10(1)
1.6 Perception and physiological impact of EMF exposure in mobile communication
11(2)
1.6.1 Risk assessment and public perception of exposure
11(1)
1.6.2 Physiological impact
12(1)
1.7 EM exposure guidelines and limits
13(4)
1.7.1 EM exposure limits
14(2)
1.7.2 Precautionary principle
16
1.7.3 EM radiation exclusion zones
15(2)
1.8 Conclusion
17(6)
References
17(6)
2 Electromagnetic field (EMF) monitoring tools
23(30)
Shoaib Anwar
Yann Toutain
2.1 Introduction
24(4)
2.1.1 EMF exposure metrics
25(1)
2.1.2 Typical EMF measurement sensor
26(2)
2.2 State of the art for EMF monitoring tools
28(18)
2.2.1 SAR measurement systems
28(2)
2.2.2 Power density/E-field measurement systems
30(11)
2.2.3 Simulation tools for EMF monitoring
41(2)
2.2.4 Other measurement tools
43(3)
2.3 EMF monitoring of a smart city
46(3)
2.4 Conclusions and perspectives
49(4)
References
50(3)
3 Large-scale EMF characterization considering real network deployments
53(3)
Luis Diez
Ramon Aguero
Luis Munoz
3.1 Test bed description
56(1)
3.1.1 Low-complexity dosimeter
56(1)
3.1.2 SmartSantander
57(2)
3.1.3 Dosimeter integration
59(4)
3.2 Scenario characterization
63(1)
3.2.1 Deployment dimensioning
63(1)
3.2 Network usage
64(3)
3.2.3 Uplink--downlink correlation
65(2)
3.3 Calibration of the measurements
67(4)
3.3.1 Monaxial to isotropic
68(1)
3.3.2 Location extrapolation factor
69(1)
3.3.3 Indoor-outdoor extrapolation factor
70(1)
3.4 Exposure calculation methodology
71(5)
3.5 Exposure analysis
76(5)
3.5.1 Frequency selectivity
76(2)
3.5.2 Geographical and temporal variation
78(1)
3.5.3 El evaluation
79(2)
3.6 Conclusion
81(4)
References
82(3)
4 EMF exposure in heterogeneous networks environments
85(30)
Filipe D. Cardoso
Luis M. Correia
4.1 Introduction
85(1)
4.2 EMF exposure evaluation and assessment
86(6)
4.2.1 Dosimetric/epidemiologic use of metrics
86(2)
4.2.2 Methods for EMF exposure assessment
88(4)
4.3 On-body measurements
92(8)
4.3.1 Estimation of EMF from personal and fixed-point exposimeters
92(3)
4.3.2 Simulation results
95(4)
4.3.3 EMF exposure in BANs
99(1)
4.4 EMF exposure in heterogeneous networks
100(8)
4.4.1 Exposure assessment in heterogeneous networks accounting for UL and DL
100(1)
4.4.2 Exposure model
100(2)
4.4.3 Simulation scenario
102(1)
4.4.4 Simulation results
102(6)
4.5 Conclusions
108(7)
References
109(6)
5 Architecture of public mobile networks and its impact on EMF exposure
115(26)
Mladen Koprivica
Milica Popovic
Aleksandar Neskovic
5.1 Introduction
115(1)
5.2 Network architecture layers: macro, micro, pico, femto
116(4)
5.2.1 Wi-Fi coverage
118(1)
5.2.2 Relation to EMF
119(1)
5.3 Measurements of incident EMF in DL
120(2)
5.4 Measurements of Tx power in UL
122(5)
5.5 Case studies: macro/micro, macro/femto
127(6)
5.5.1 The addition of the microcell and indoor DAS system
128(4)
5.5.2 Femtocell vs. macrocell
132(1)
5.6 Impact of specific user services to EMF exposure
133(4)
5.7 Conclusion
137(4)
References
137(4)
Part II EMF reduction techniques
141(136)
6 EMF emission-aware resource allocation for uplink OFDM systems
143(24)
Yusuf A. Sambo
Mohammed Al-Imari
Fabien Heliot
Muhammad Ali Imran
6.1 Introduction
143(1)
6.2 System model
144(2)
6.3 EMF emission reduction schemes
146(8)
6.3.1 Offline EMF emission reduction scheme
147(4)
6.3.2 Online EMF emission reduction scheme
151(2)
6.3.3 Complexity analysis
153(1)
6.4 Numerical results
154(8)
6.5 Conclusion
162(5)
References
163(4)
7 Multicell uplink scheduling for EMF emission minimization in OFDMA systems
167(18)
Yusuf A. Sambo
Fabien Heliot
Muhammad Ali Imran
7.1 Introduction
167(1)
7.2 System model
168(2)
7.3 MC EMF emission-aware scheduling scheme
170(7)
7.3.1 Subcarrier allocation
171(1)
7.3.2 Power allocation
172(3)
7.3.3 Scheduler algorithm
175(2)
7.4 Complexity analysis
177(1)
7.5 Numerical results and discussions
178(5)
7.6 Conclusion
183(2)
References
184(1)
8 EMF: RF device end of things -- low-exposure user terminal radio design concepts
185(22)
Tim W.C. Brown
8.1 Historical context: design of low SAR antennas for voice mobile
186(4)
8.2 Emergence of ubiquitous computing and the changed shape of wireless device usage
190(2)
8.3 Low-exposure antenna technologies in advanced mobile terminals
192(7)
8.3.1 Context-aware multiple antennas
194(3)
8.3.2 Proximity slave device for mobile terminals
197(2)
8.4 Societal changes in mobile terminal usage
199(1)
8.5 Low-exposure transmission techniques for advanced mobile terminals
200(1)
8.6 Conclusions and evaluation of candidate low-exposure technologies for the mobile terminal
201(6)
References
202(5)
9 Millimetre-wave flexible wearable antenna design and challenges for 5G and beyond
207(24)
Syeda Fizzah Jilani
Qammer H. Abbasi
Akram Alomainy
9.1 Millimetre-wave spectrum for 5G networks
208(1)
9.2 High-frequency spectrum challenges for 5G
209(2)
9.3 Antennas for 5G cellular networks
211(1)
9.4 5G antennas interaction with human body
211(2)
9.5 Flexible antennas for 5G wearable applications
213(1)
9.6 Fabrication processes for flexible antennas
214(4)
9.6.1 Laser milling and PCB prototyping
214(1)
9.6.2 Inkjet printing
215(1)
9.6.3 Photolithography
216(1)
9.6.4 Screen printing
217(1)
9.7 Design and implementation of flexible 5G antenna
218(8)
9.7.1 Antenna design and fabrication
218(4)
9.7.2 Numerical and experimental analysis
222(4)
9.8 Conclusion
226(5)
References
226(5)
10 Reducing EMF emissions in ultra-reliable low-latency communications with HARQ
231(20)
Joao Pedro Battistella Nadas
Oluwakavode Onireti
Richard Demo Souza
Hirley Alves
Glauber Brante
Muhammad Ali Imran
10.1 Hybrid automatic repeat request
232(5)
10.2 Reducing EMF emission
237(11)
10.2.1 Health concerns from EMF exposure
237(1)
10.2.2 Reducing EMF radiation in URLLC applications
238(10)
10.3 Conclusion
248(3)
References
248(3)
11 Reducing EMF via energy-efficient inter-frequency small cell discovery
251(24)
Oluwakayode Onireti
Muhammad Ali Imran
11.1 Introduction
251(1)
11.2 Energy-efficient ISCD mechanisms
252(4)
11.2.1 Relaxed inter-frequency measurement gap
253(1)
11.2.2 UE speed-based inter-frequency measurement gap triggering
253(2)
11.2.3 Use of RSS or RSRP radio fingerprint for ISCD
255(1)
11.3 Inter-frequency small cell discovery
256(4)
11.3.1 ISCD periodicity and small cell offloading opportunity
257(2)
11.3.2 Approximation of the percentage of time a typical UE missed small cell offloading opportunity
259(1)
11.4 Energy efficiency evaluation
260(8)
11.4.1 Probability of UE association to a tier
261(3)
11.4.2 Ideal average energy efficiency
264(1)
11.4.3 Realistic average energy efficiency
264(4)
11.5 Optimal ISCD periodicity
268(5)
11.5.1 Optimal ISCD based on average energy consumption
268(1)
11.5.2 Optimal ISCD based on UE's average energy efficiency
269(4)
11.6 Conclusion
273(2)
References
273(2)
12 Conclusion and future perspectives
275(2)
Yusuf A. Sambo
Fabien Heliot
Muhammad Ali Imran
Index 277
Muhammad Ali Imran is the Vice Dean of Glasgow College UESTC and Professor of Communication Systems at the School of Engineering, University of Glasgow, UK. He is also an Affiliate Professor at the University of Oklahoma, USA and a Visiting Professor at the 5G Innovation Centre, University of Surrey, UK.



Fabien Héliot is currently a Lecturer at the Institute for Communication Systems (ICS), University of Surrey, UK. His main research interests cover energy efficiency, EM exposure reduction, cooperative communication, MIMO, and radio resource management.



Yusuf Abdulrahman Sambo is a Research Associate and the 5G-SON testbed lead at the University of Glasgow, UK. His main research interests include EMF exposure reduction, radio resource management, energy efficiency, wireless sensor networks and device-to-device (D2D) communication.