Atjaunināt sīkdatņu piekrišanu

Lung Function 7th edition [Hardback]

Edited by (Skipton House, London, UK), Edited by , Edited by , Edited by (Catholic University of Leuven), Edited by , Edited by (University of Newcastle Medical School, Newcastle-upon-Tyne)
  • Formāts: Hardback, 816 pages, height x width x depth: 277x226x46 mm, weight: 2200 g
  • Izdošanas datums: 29-Apr-2020
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1118597354
  • ISBN-13: 9781118597354
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 204,20 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Bibliotēkām
  • Formāts: Hardback, 816 pages, height x width x depth: 277x226x46 mm, weight: 2200 g
  • Izdošanas datums: 29-Apr-2020
  • Izdevniecība: Wiley-Blackwell
  • ISBN-10: 1118597354
  • ISBN-13: 9781118597354
Citas grāmatas par šo tēmu:

The seventh edition of the most authoritative and comprehensive book published on lung function, now completely revised and restructured

Lung function assessment is the central pillar of respiratory diagnosis. Most hospitals have lung function laboratories where patients are tested with a variety of physiological methods. The tests and techniques used are specialized and utilize the expertise of respiratory physicians, physiologists, and technicians. This new edition of the classic text on lung function is a theoretical textbook and practical manual in one that gives a comprehensive account of lung function and its assessment in healthy persons and those with all types of respiratory disorder, against a background of respiratory, exercise, and environmental physiology. It incorporates the technical and methodological recommendations for lung function testing of the American Thoracic Society and European Respiratory Society.

Cotes' Lung Function, 7th Edition is filled with chapters covering respiratory surveys, respiratory muscles, neonatal assessment, exercise, sleep, high altitude, hyperbaria, the effects of cold and heat, respirable dusts, fumes and vapors, anesthesia, surgery, and respiratory rehabilitation. It also offers a compendium of lung function in selected individual diseases and is filled with more diagrams and illustrative cases than previous editions.

  • The only text to cover lung function assessment from first principles including methodology, reference values, and interpretation
  • Completely re-written in a contemporary style—includes user-friendly equations and more diagrams
  • Covers the latest advances in the treatment of lung function, including a stronger clinical and practical bias and more on new techniques and equipment
  • Keeps mathematical treatments to a minimum

Cotes' Lung Function is an ideal guide for respiratory physicians and surgeons, staff of lung function laboratories, and others who have a professional interest in the function of the lungs at rest or on exercise and how it may be assessed. Physiologists, anthropologists, pediatricians, anesthetists, occupational physicians, explorers, epidemiologists, and respiratory nurses should also find the book useful.

Preface xxvii
Contributors xxix
Part I Introduction 1(20)
1 How We Came to Have Lungs and How Our Understanding of Lung Function has Developed
3(18)
1.1 The Gaseous Environment
3(1)
1.2 Functional Evolution of the Lung
4(1)
1.3 Early Studies of Lung Function
5(1)
1.4 The Past 350 Years
5(3)
1.4.1 Lung Volumes
6(1)
1.4.2 Lung Mechanics
6(1)
1.4.3 Ventilatory Capacity
6(1)
1.4.4 Blood Chemistry and Gas Exchange in the Lung
6(1)
1.4.5 Control of Respiration
7(1)
1.4.6 Energy Expenditure during Exercise
8(1)
1.5 Practical Assessment of Lung Function
8(3)
1.6 The Position Today
11(1)
1.7 Future Prospects
11(1)
References
11(4)
Further Reading
15(6)
Part II Foundations 21(128)
2 Getting Started
23(10)
Michael D.L. Morgan
2.1 Brief Description of the Lungs and their Function
23(1)
2.2 Deviations from Average Normal Lung Function
24(1)
2.3 Uses of Lung Function Tests
24(1)
2.4 Assessment of Lung Function
25(1)
2.5 Setting up a Laboratory
25(4)
2.6 Conduct of Assessments
29(1)
Reference
30(1)
Further Reading
30(3)
3 Development and Functional Anatomy of the Respiratory System
33(12)
Sungmi Jung
Richard Fraser
3.1 Introduction
33(1)
3.2 Functional Anatomy of the Upper Airways
33(1)
3.3 The Lungs
34(6)
3.3.1 Early Stages in Development
34(1)
3.3.2 Functional Anatomy
35(1)
3.3.3 Bronchopulmonary Anatomy
35(1)
3.3.4 Intrapulmonary Airways
36(1)
3.3.5 Acinus
37(1)
3.3.6 Collateral Channels
38(1)
3.3.7 Alveoli
38(1)
3.3.8 Pulmonary Circulation
39(1)
3.3.9 Bronchial Circulation
39(1)
3.3.10 Pulmonary Lymphatics
39(1)
3.3.11 Lymphoreticular Cells
39(1)
3.3.12 Innervation and Pulmonary Receptors
40(1)
3.4 The Pleura
40(1)
References
41(2)
Further Reading
43(2)
4 Body Size and Anthropometric Measurements
45(12)
4.1 Bodily Components are Matched for Size
45(1)
4.2 Growth and Ageing
45(2)
4.3 Stature (Body Length)
47(1)
4.3.1 Overview
47(1)
4.3.2 Measurement of Stature and Sitting Height
48(1)
4.4 Body Width
48(1)
4.5 Body Depth and Girth
49(1)
4.6 Body Mass and Body Mass Index
50(1)
4.7 Body Composition
51(3)
4.7.1 Fat% and Fat-Free Mass
51(1)
4.7.2 Measurement of Fat% and Fat-Free Mass
52(2)
4.8 Distributions of Fat and Muscle: A Forward Look
54(1)
4.9 Conclusion
55(1)
References
55(1)
Further Reading
56(1)
5 Numerical Interpretation of Physiological Variables
57(18)
J. Martin Bland
5.1 Introduction
57(1)
5.2 Simple Arithmetic
57(1)
5.2.1 Manipulating Numbers
57(1)
5.2.2 Averaging Ratios
58(1)
5.2.3 Decimal Age
58(1)
5.2.4 Logarithms
58(1)
5.3 Normal and Skewed Distributions
58(4)
5.4 Measurement Error
62(1)
5.5 Relationship of One Variable to Another
63(2)
5.5.1 Proportional Relationships
64(1)
5.5.2 Linear Relationships
64(1)
5.5.3 Simple Curves Through the Origin
65(1)
5.5.4 Exponential Curves
65(1)
5.6 Interpreting a Possible Change in an Index
65(4)
5.6.1 Sample Size Required to Detect a Meaningful Difference
66(1)
5.6.2 Regression to the Mean
66(3)
5.6.3 Choice of Model for Paired Observations
69(1)
5.7 Relationship of One Variable to Several Others
69(4)
5.7.1 Multiple Regression
69(1)
5.7.2 Co-Linearity
70(1)
5.7.3 Allowing for the Effects of Age
71(1)
5.7.4 Variation about the Regression Equation
71(1)
5.7.5 Other Types of Regression Analysis
72(1)
5.7.6 Principal Component Analysis
72(1)
References
73(2)
6 Basic Terminology and Gas Laws
75(16)
Adrian Kendrick
6.1 Glossary of Terms
75(1)
6.2 Units
75(1)
6.3 Primary Symbols and Suffixes
75(4)
6.4 Abbreviations
79(1)
6.5 Terminology for Lung Imaging
80(1)
6.6 The Gas Laws
80(9)
6.6.1 Boyle's Law and Charles' Law (BTPS and STPD Adjustment)
81(6)
6.6.2 Ideal Gas Law
87(1)
6.6.3 Partial Pressure - Dalton's Law
88(1)
6.6.4 Henry's Law - Solubility of Gases in Liquids
89(1)
6.6.5 Laws of Diffusion - Graham's Law and Fick's First Law
89(1)
6.6.6 Conclusion
89(1)
References
89(2)
7 Basic Equipment and Measurement Techniques
91(26)
Brendan G. Cooper
7.1 Introduction
91(1)
7.2 Computers
91(1)
7.3 Measurement of Gas Volumes and Flows
92(2)
7.3.1 Volume-Measuring Devices
92(2)
7.3.2 Flow-Measuring Devices
94(2)
7.4 Measurement of Respiratory Pressure
96(1)
7.5 Other Electronic Apparatus
96(2)
7.6 Connecting the Subject to the Equipment
98(1)
7.7 Analysis of Gases
98(1)
7.8 Measurement of Oxygen Consumption and Respiratory Exchange Ratio
99(1)
7.8.1 Oxygen Consumption
99(1)
7.8.2 Respiratory Exchange Ratio
100(1)
7.9 Collection and Storage of Blood
100(1)
7.10 Analysis of Blood for Oxygen
101(2)
7.10.1 Content of Oxygen and Saturation of Haemoglobin
101(1)
7.10.2 Tension of Oxygen in Blood
102(1)
7.11 Analysis of Blood for Carbon Dioxide
103(3)
7.11.1 Direct Methods
103(2)
7.11.2 Indirect Methods
105(1)
7.12 Use of Isotopes (Including Radioisotopes) to Study Lung Function
106(3)
7.13 Sterilisation and Disinfection of Equipment
109(1)
7.14 Care of Gas Cylinders
109(1)
7.15 Calibration of Equipment
110(3)
7.15.1 Anthropometry Equipment
111(1)
7.15.2 Linearity of Gas Analysers
111(2)
7.16 Quality Control
113(1)
7.17 Manufacturers
113(1)
References
113(3)
Further Reading
116(1)
8 Respiratory Surveys
117(12)
Peter G.J. Burney
8.1 The Uses of Epidemiology
117(1)
8.2 Study Designs and Sampling
117(5)
8.2.1 Populations and Samples
117(1)
8.2.2 Prevalence Studies
118(1)
8.2.3 Cohort Studies
118(1)
8.2.4 Case-Control Studies
119(1)
8.2.5 Selection Bias
120(1)
8.2.6 The Use and Abuse of Matching
121(1)
8.2.7 Other Stratagems for the Efficient Design of Studies
122(1)
8.3 Data Collection
122(3)
8.3.1 The Characteristics of Good Data and the Nature of Error
122(1)
8.3.2 Information Bias
123(1)
8.3.3 Use of Questionnaires
123(1)
8.3.4 Lung Function Measurements
124(1)
8.3.5 Quality Assurance and Quality Control
125(1)
8.4 Analysis and Related Issues
125(2)
8.4.1 Analysis Needs to be Appropriate to the Design
125(1)
8.4.2 Confounding
126(1)
8.4.3 Effect Modification
126(1)
8.4.4 Analysis of Lung Function
126(1)
8.5 Ethics Considerations
127(1)
References
127(2)
9 The Application of Analytical Technique Applied to Expired Air as a Means of Monitoring Airway and Lung Function
129(20)
Paolo Paredi
Peter Barnes
9.1 Exhaled Nitric Oxide
129(7)
9.1.1 Source of Nitric Oxide in Exhaled Air
129(1)
9.1.2 Anatomic Origin of Nitric Oxide
130(1)
9.1.3 Nitric Oxide Measurement
130(1)
9.1.4 Single-Breath Nitric Oxide Measurement
131(2)
9.1.5 Multiple-Breath Nitric Oxide Measurement
133(2)
9.1.6 Limitations of the Multiple-Breath Nitric Oxide Measurement
135(1)
9.1.7 Area Under the Curve Method
136(1)
9.2 Conclusions
136(5)
9.2.1 The Role of New Markers of Airway Inflammation
136(1)
9.2.2 Exhaled Breath Temperature
136(3)
9.2.3 Bronchial Blood Flow
139(1)
9.2.4 Clinical Studies
140(1)
9.3 Volatile Organic Compounds
141(3)
9.3.1 Ethane and Pentane
141(1)
9.3.2 Methods
142(1)
9.3.3 Clinical Studies
142(1)
9.3.4 Other Volatile Organic Compounds and their Measurement
143(1)
9.3.5 Clinical Studies
143(1)
9.3.6 Electronic Nose
143(1)
9.4 Exhaled Carbon Monoxide
144(1)
9.4.1 Measurement
144(1)
9.4.2 Clinical Studies
144(1)
9.5 Conclusions
145(1)
References
145(4)
Part III Physiology and Measurement of Lung Function 149(286)
10 Chest Wall and Respiratory Muscles
151(26)
Andre De Troyer
John Moxham
10.1 Introduction
151(1)
10.2 The Chest Wall
151(1)
10.3 The Diaphragm
152(4)
10.4 The Intercostal Muscles
156(6)
10.5 Interaction Between the Diaphragm and the Inspiratory Intercostals
162(1)
10.6 The Neck Muscles
163(2)
10.7 The Abdominal Muscles
165(1)
10.8 Clinical Assessment of the Respiratory Muscles
166(6)
References
172(5)
11 Lung Volumes
177(10)
11.1 Definitions
177(1)
11.1.1 Total Lung Capacity and its Subdivisions
177(1)
11.1.2 Vital Capacity and Variants Thereof
177(1)
11.1.3 Other Volumes
177(1)
11.2 Features of Lung Volumes
178(2)
11.2.1 Some Determinants
178(2)
11.3 Measurement of Total Lung Capacity and its Subdivisions
180(4)
11.3.1 Closed Circuit Gas Dilution Method
180(2)
11.3.2 Alternative Closed Circuit Methods
182(1)
11.3.3 Open Circuit Gas Dilution Method
182(1)
11.3.4 Radiographic Method
183(1)
11.3.5 Plethysmographic Methods
184(1)
References
184(1)
Further Reading
185(2)
12 Lung and Chest Wall Elasticity
187(16)
G. John Gibson
12.1 Introduction and Definitions
187(1)
12.2 Lung Elasticity
188(7)
12.2.1 Factors Contributing to Lung Recoil
188(2)
12.2.2 Implications of Lung Elasticity for the Distribution of Ventilation
190(1)
12.2.3 Implications of Lung Elasticity for Airway and Alveolar Patency
190(1)
12.2.4 Inspiratory and Expiratory Pressure-Volume Curves
191(1)
12.2.5 Dynamic Lung Compliance
191(1)
12.2.6 Measurement of Lung Elasticity
192(2)
12.2.7 Physiological Variation in Lung Elasticity
194(1)
12.3 Pathological Variation in Lung Elasticity
195(1)
12.4 Compliance of the Chest Wall and Respiratory System
196(3)
12.4.1 Clinical Measurements of Respiratory System Elasticity
197(1)
12.4.2 Methods of Measurement in Ventilated Patients [ 56]
198(1)
12.5 Distensibility of Conducting Airways
199(1)
12.5.1 Practical Aspects
199(1)
12.6 Concluding Remarks
199(1)
References
200(3)
13 Forced Ventilatory Volumes and Flows
203(14)
Riccardo Pellegrino
13.1 Introduction
203(1)
13.2 Maximal Breathing
203(2)
13.2.1 Definitions
203(1)
13.2.2 Background
204(1)
13.2.3 Measurement
205(1)
13.3 Peak Expiratory Flow
205(1)
13.3.1 Background
205(1)
13.3.2 Measurement
205(1)
13.4 Indices from Single Breath Volume-Time Curves
206(2)
13.4.1 Indices Based on Volume
206(1)
13.4.2 Indices Expressed as Times
207(1)
13.5 Indices from the Relationship of Flow to Volume
208(2)
13.5.1 Expiratory Flow-Volume Curve
209(1)
13.5.2 Inspiratory Flow-Volume Curve
210(1)
13.6 Measurement of Single Breath Indices of Ventilatory Capacity
210(3)
13.6.1 General Considerations
210(1)
13.6.2 Measurement of FEV1 and Other Indices from Volume-Time Curves
210(2)
13.6.3 Practical Aspects of Flow-Volume Spirometry
212(1)
13.7 Density Dependence
213(1)
13.7.1 Volume of Iso-Flow
213(1)
13.7.2 Measurement of V-isov
213(1)
References
214(2)
Further Reading
216(1)
14 Theory and Measurement of Respiratory Resistance
217(14)
Jason H.T. Bates
14.1 Introduction
217(1)
14.2 Theoretical Basis for Respiratory Resistance
217(1)
14.3 Airway Resistance
218(2)
14.3.1 Body Plethysmography
218(1)
14.3.2 Alveolar Capsule
219(1)
14.3.3 Flow Dependence of Airway Resistance
220(1)
14.4 Respiratory Resistance and its Components
220(2)
14.4.1 Total Respiratory System Resistance
220(1)
14.4.2 Lung Resistance
221(1)
14.4.3 Tissue Resistance
221(1)
14.5 Frequency Dependence of Resistance and Elastance
222(1)
14.5.1 Tissue Viscoelasticity
222(1)
14.5.2 Mechanical Heterogeneities
223(1)
14.6 Respiratory Impedance
223(4)
14.6.1 Forced Oscillation Technique
224(1)
14.6.2 Physiological Interpretation of Impedance
224(3)
14.7 Summary
227(1)
References
227(4)
15 The Control of Airway Function and the Assessment of Airway Calibre
231(28)
Eric Derom
15.1 Introduction
231(1)
15.2 Genetics and Airway Calibre
232(1)
15.3 Physiological Control of Airway Calibre
232(3)
15.3.1 Parasympathetic Nervous System
232(1)
15.3.2 Sympathetic Nervous System
233(1)
15.3.3 The NANC System
234(1)
15.3.4 Other Control Mechanisms of Airway Calibre
234(1)
15.4 Airflow Limitation in Diseases
235(3)
15.4.1 Asthma
235(2)
15.4.2 Chronic Obstructive Pulmonary Disease
237(1)
15.4.3 Cystic Fibrosis
238(1)
15.4.4 Obesity
238(1)
15.4.5 Allergic Rhinitis
238(1)
15.5 Assessment of Airflow Limitation
238(2)
15.5.1 Large Airway Obstruction
238(1)
15.5.2 Small Airway Obstruction
239(1)
15.6 Bronchodilator Testing as a Diagnostic Tool
240(5)
15.6.1 Measurements Used in Bronchodilator Testing
241(1)
15.6.2 Bronchodilatation After Inhalation of β2-Agonists and/or Anticholinergics
241(1)
15.6.3 Expression of the Results
242(1)
15.6.4 Interpretation
243(1)
15.6.5 Bronchodilating Effects of Other Drugs
244(1)
15.7 Bronchial Hyper-Responsiveness as a Diagnostic Tool
245(6)
15.7.1 Methacholine and Histamine Challenge Testing
245(3)
15.7.2 Exercise Challenge Testing
248(1)
15.7.3 Eucapnic Voluntary Hyperpnoea
249(1)
15.7.4 Challenges with Hyperosmolar Aerosols (Hypertonic Saline, Mannitol)
250(1)
15.7.5 Adenosine Challenge Testing
250(1)
15.7.6 Specific Inhalation Challenges (Allergens, Aspirin)
250(1)
Acknowledgements
251(1)
References
251(8)
16 Ventilation, Blood Flow, and Their Inter-Relationships
259(42)
G. Kim Prisk
16.1 Introduction and Basic Concepts
259(2)
16.1.1 Gas Exchange - The Basic Principle
259(1)
16.1.2 Ventilation-Perfusion Ratio
259(1)
16.1.3 Systematic Variation in Ventilation: the Slinky Spring
260(1)
16.1.4 Systematic Variation in Blood Flow: the Zone Model of Perfusion
261(1)
16.2 Distribution of Ventilation
261(4)
16.2.1 Anatomical Dead-Space
261(1)
16.2.2 Gravitationally Induced Heterogeneity and the Effects of Posture
262(1)
16.2.3 Non-Gravitational Heterogeneity and the Uneven Distribution of Resistance and Compliance
263(1)
16.2.4 Convective Diffusive Interactions
264(1)
16.2.5 Uneven Contraction of the Respiratory Muscles
264(1)
16.2.6 Cardiogenic Motion
265(1)
16.2.7 Airway Obstruction
265(1)
16.3 Distribution of Pulmonary Blood Flow
265(2)
16.3.1 The Pulmonary Circulation
265(1)
16.3.2 Gravitational Blood Flow Heterogeneity
265(1)
16.3.3 Non-Gravitational Blood Flow Heterogeneity
266(1)
16.3.4 Pulmonary Vasomotor Tone
266(1)
16.3.5 Hypoxic Pulmonary Vasoconstriction
267(1)
16.3.6 Local Pharmacological Mechanisms
267(1)
16.4 Matching of Ventilation and Perfusion
267(7)
16.4.1 The Three-Compartment Model
267(5)
16.4.2 Beyond the Three-Compartment Model
272(1)
16.4.3 Compensations for VA/Q Inequality
272(2)
16.5 Assessing the Evenness of Ventilation
274(8)
16.5.1 Performing the Single-Breath Wash-Out
274(2)
16.5.2 Slope of the Alveolar Plateau (Slope of Phase 3)
276(1)
16.5.3 Cardiogenic Oscillations
277(1)
16.5.4 Closing Volume and Closing Capacity
277(1)
16.5.5 Variants on Single-Breath Methods
278(1)
16.5.6 The Multiple-Breath Wash-Out
279(1)
16.5.7 Moment Analysis and 'Slow' and 'Fast' Space
279(1)
16.5.8 Distribution of Specific Ventilation
280(1)
16.5.9 Lung Clearance Index
281(1)
16.5.10 Scond and Sacin
281(1)
16.6 Measuring Pulmonary Blood Flow and its Heterogeneity
282(4)
16.6.1 Total Pulmonary Blood Flow - Cardiac Output
282(1)
16.6.2 Direct Fick
282(1)
16.6.3 Indirect Fick Methods Using CO2
282(2)
16.6.4 Soluble Gas Rebreathing
284(1)
16.6.5 Soluble Gas Open Circuit
284(1)
16.6.6 Indicator Dilution Methods
284(1)
16.6.7 Other Methods of Measuring Cardiac Output
285(1)
16.6.8 Single-Breath Perfusion Heterogeneity
286(1)
16.7 Measuring VA/Q Inequality
286(5)
16.7.1 Compartmental Analysis - Dead-Space and Shunt
287(1)
16.7.2 Intra-Breath-R
288(1)
16.7.3 MIGET
289(2)
16.8 Imaging VA, Q, and VA/Q
291(4)
16.8.1 Ventilation
291(2)
16.8.2 Perfusion
293(1)
16.8.3 VA/Q
293(2)
References
295(6)
17 Transfer of Gases into the Blood of Alveolar Capillaries
301(12)
Eric Derom
Guy F. Joos
17.1 Introduction
301(1)
17.2 Diffusion in the Gas Phase
301(2)
17.2.1 Directional Velocity
301(2)
17.2.2 Diffusion Coefficient
303(1)
17.2.3 Behaviour of Gas Mixtures
303(1)
17.2.4 Applications
303(1)
17.3 Transfer of Gas Across the Alveolar Capillary Membrane
303(5)
17.3.1 Role of Gas Solubility in Blood
304(1)
17.3.2 Transfer Involving Chemical Reaction with Blood
305(1)
17.3.3 General Gas Equation
306(1)
17.3.4 Concept of Resistance to Transfer of Gas
307(1)
17.3.5 Terminology: Transfer Factor or Diffusing Capacity?
308(1)
17.4 Application of the General Gas Equation (Eq. 17.8) to Individual Gases
308(2)
17.4.1 Gases that do not Combine with Haemoglobin
308(1)
17.4.2 Carbon Monoxide
309(1)
17.4.3 Oxygen
309(1)
17.4.4 Nitric Oxide
309(1)
17.5 Practical Consequences
310(1)
References
310(1)
Further Reading
311(2)
18 Transfer Factor (TI) for carbon monoxide (CO) and nitric oxide (NO)
313(40)
Colin D.R. Borland
Mike Hughes
18.1 Introduction
313(4)
18.1.1 Overview
313(3)
18.1.2 Terminology and Units: Transfer Factor or Diffusing Capacity?
316(1)
18.2 Introduction to Diffusion
317(1)
18.2.1 The General Equation for Diffusing Capacity (Dl)/Transfer Factor (Tl)
317(1)
18.3 Diffusion in the Gas Phase
318(1)
18.3.1 Molecular Weight Dependence
318(1)
18.3.2 Stratified Inhomogeneity: Does Gas Phase Diffusion Resistance (1/Dg) Affect Tl,CO and Tl,NO?
318(1)
18.4 Partitioning Transfer Factor Tl/CO into Membrane (Dm) and Red Cell (θVc) Components
319(4)
18.4.1 The Roughton-Forster Equation
319(1)
18.4.2 Calculating Dm and Capillary Volume (Vc) from the Roughton-Forster Equation
320(1)
18.4.3 Membrane Diffusing Capacity (Dm,CO)
321(1)
18.4.4 Red Cell Resistance (1/θVc)
322(1)
18.4.5 How ONO can be Finite In Vitro, but Infinite In Vivo
322(1)
18.4.6 Dm and Vc: Morphometric-Physiological Comparison
323(1)
18.5 Diffusion Limitation for Oxygen
323(2)
18.5.1 Diffusion-Perfusion Interaction: the Tl/βQ Concept
323(2)
18.5.2 Low Diffusion-Perfusion Ratios Cause Hypoxaemia
325(1)
18.6 The Transfer Factor (TI) for Different Gases: Theory
325(3)
18.6.1 Oxygen
325(1)
18.6.2 Carbon Monoxide
326(1)
18.6.3 Nitric Oxide
326(1)
18.6.4 Effects of Heterogeneity
327(1)
18.7 Methods for Measuring Tl,CO
328(5)
18.7.1 Principles
328(1)
18.7.2 Single-Breath with Breathholding (Tl,COsb)
329(3)
18.7.3 Other Methods for Measuring Tl,CO
332(1)
18.8 Tl,CO: Extrinsic Variables
333(3)
18.8.1 Alveolar Volume (VA) and Expansion Change
333(1)
18.8.2 Exercise
334(1)
18.8.3 Haemoglobin Concentration and Haematocrit
334(1)
18.8.4 Carbon Monoxide Back Tension and Carboxyhaemoglobin
335(1)
18.8.5 PA,O2 Variation
335(1)
18.8.6 Reference Values for Tl,CO and KCO
335(1)
18.9 Tl,COsb: Interpretation
336(4)
18.9.1 Introduction
336(1)
18.9.2 KCO and VA in Lungs with Normal Alveolar Structure
336(2)
18.9.3 KCO and VA in Lungs with Abnormal Alveolar Structure
338(1)
18.9.4 Dm,CO and Vc in Physiology and Pathology
338(2)
18.10 Nitric Oxide Transfer Factor: Tl,NO
340(4)
18.10.1 Methodology
340(2)
18.10.2 Normal Values and Physiological Variation
342(1)
18.10.3 Tl,NO/TLCO Ratio
343(1)
18.10.4 Tl,NO in Disease
343(1)
18.10.5 Should Tl,NO Become a Routine Lung Function Test?
344(1)
18.11 Summary
344(1)
Acknowledgements
345(1)
References
345(5)
18.A Appendices
350(3)
18.A.1 The General Equation for Diffusion
350(1)
18.A.2 Derivation of the Diffusive-Perfusive Conductance Ratio
350(1)
18.A.3 The Single-Breath Tl,CO Calculation Derived
351(1)
18.A.4 Steady-State (ss) Tl,CO: Method and Calculation
351(1)
18.A.5 Tl,CO Corrections for Low or High PA,O2
352(1)
19 Oxygen
353(24)
Dan S. Karbing
Stephen E. Rees
19.1 Overview
353(2)
19.2 Diffusion in the Gas Phase
355(1)
19.2.1 Directional Velocity
355(1)
19.2.2 Fick's First Law of Diffusion
355(1)
19.3 Capacity of Blood for Oxygen
356(3)
19.3.1 Role of Gas Solubility in Blood on Rate of Gas Transfer
356(1)
19.3.2 Reaction of Oxygen with Haemoglobin
356(1)
19.3.3 Oxygen Dissociation Curve
357(2)
19.4 Transfer Factor of the Lung
359(1)
19.4.1 General Gas Equation
359(1)
19.4.2 Concept of Resistance to Transfer of Gas
359(1)
19.4.3 Terminology: Transfer Factor or Diffusing Capacity?
360(1)
19.5 Oxygen Uptake into Blood
360(2)
19.5.1 Some Features of the Transfer Gradient
360(1)
19.5.2 Oxygen Uptake During Normoxia: a Worked Example
361(1)
19.5.3 Oxygen Uptake During Hypoxia: a Worked Example
362(1)
19.6 Measurement of Transfer Factor for Oxygen (Tl,O2)
362(2)
19.6.1 Overview of Methods
362(1)
19.6.2 Derivation of Tl,O2 from TLCO
362(1)
19.6.3 VA/Q Method for Tl,O2 (Summary)
363(1)
19.6.4 Method of Riley and Lilienthal [ 40-42]
363(1)
19.6.5 Effects on Tl,O2 of Uneven Lung Function
364(1)
19.7 Respiratory Determinants of Arterial Oxygen Tension and Saturation: Some Worked Examples
364(3)
19.7.1 Alveolar Ventilation
365(1)
19.7.2 Two-Compartment Model of Normal Gas Exchange
365(2)
19.8 Investigation of Hypoxaemia, Including Use of Models
367(6)
19.8.1 Introduction
367(2)
19.8.2 Graphical Analysis of Gas Exchange: Oxygen-Carbon Dioxide Diagram
369(1)
19.8.3 Two-Parameter Models Relating Changes in Inspiratory O2 to Sp,O2
369(4)
Acknowledgement
373(1)
References
373(4)
20 Carbon Dioxide
377(12)
Erik R. Swenson
20.1 Introduction
377(1)
20.2 Gas Exchange for CO2
378(3)
20.2.1 Overview
378(1)
20.2.2 Whole Blood Dissociation Curve for Carbon Dioxide
378(1)
20.2.3 Uptake of Carbon Dioxide by Blood
379(1)
20.2.4 Carbamino-Haemoglobin
380(1)
20.2.5 Release of CO2 in the Lungs
380(1)
20.2.6 Rate of Tissue and Alveolar Equilibration for CO2
380(1)
20.3 Acid-Base Balance
381(5)
20.3.1 Overview
381(1)
20.3.2 Indices: Base Excess, Strong Ion Difference, Anion Gap
382(1)
20.3.3 Respiratory Alkalosis and Acidosis
383(1)
20.3.4 Changes in Cerebrospinal Fluid
384(1)
20.3.5 Renal Mechanisms
385(1)
20.3.6 Metabolic Acidosis and Alkalosis
385(1)
20.3.7 Acid-Base Disturbances of Multiple Aetiologies
386(1)
References
386(2)
Further Reading
388(1)
21 Control of Respiration
389(18)
Bertien M.A. Buyse
21.1 Introduction
389(1)
21.2 Control of Respiration (Figure 21.1)
389(5)
21.2.1 Brain Stem Neural Respiratory Activity [ 4]
389(2)
21.2.2 Automatic Breathing
391(2)
21.2.3 Spinal Mechanisms
393(1)
21.2.4 Behavioural Control - Volitional Breathing
394(1)
21.3 Clinical Assessment of Respiratory Control
394(9)
21.3.1 Standardisation of the Conditions of Measurement is of Crucial Importance
394(1)
21.3.2 Measurement of Respiratory Output (Figure 21.1)
395(2)
21.3.3 Methods of Evaluating Control of Respiration in Clinical Practice
397(6)
References
403(4)
22 The Sensation of Breathing
407(16)
Mathias Schroijen
Paul W. Davenport
Omer Van den Bergh
Ilse Van Diest
22.1 Introduction
407(1)
22.2 Afferent Input of Respiratory Sensory Information
408(3)
22.2.1 Respiratory Sensation
408(2)
22.2.2 Dyspnoea
410(1)
22.3 Assessment of Respiratory Sensation and Dyspnoea
411(3)
22.3.1 Neural processing
411(1)
22.3.2 Psychophysical Methods
412(1)
22.3.3 Self-Reported Dyspnoea
413(1)
22.3.4 Behavioural Measures
413(1)
22.4 Factors Modulating the Experience of Respiratory Sensations and Dyspnoea
414(4)
22.4.1 Age
414(1)
22.4.2 Gender
414(1)
22.4.3 Attention
414(1)
22.4.4 Fear and Anxiety
415(1)
22.4.5 Symptom Schemata, Illness Representation, and Illness Behaviour
416(1)
22.4.6 Social Context
417(1)
22.5 Conclusion
418(1)
References
419(4)
23 Breathing Function in Newborn Babies
423(12)
Urs P. Frey
Philipp Latzin
23.1 Introduction
423(1)
23.2 Developmental Respiratory Physiology in Early Life
423(1)
23.3 Assessment of Lung Function in Neonates and Infants (Aged 0-2 Years)
424(4)
23.3.1 Standardisation and Measurement Conditions Related to Infant Lung Function Testing
424(1)
23.3.2 Tidal Breathing Parameters
425(1)
23.3.3 Regulation of Breathing, Novel Mathematical Methods
425(1)
23.3.4 Measurement of Forced Expiratory Flow (Rapid Thoraco-Abdominal Compression Techniques: RTC)
425(1)
23.3.5 Measurement of Lung Volumes
426(1)
23.3.6 Measurement of Ventilation Inhomogeneity
427(1)
23.3.7 Passive Respiratory Mechanics and the Interrupter Technique
427(1)
23.3.8 Forced Oscillation and Interrupter Technique
427(1)
23.3.9 Measurement of Transfer Factor (Diffusing Capacity)
428(1)
23.3.10 Measurement of Exhaled Nitric Oxide
428(1)
23.4 Reference Values of Infant Lung Function
428(1)
23.5 Potential Role of Lung Function Testing in Infant Respiratory Disease
429(1)
23.6 Lung Function in Children Aged 2-6 Years
429(3)
23.6.1 Standardisation of Preschool Lung Function Testing
429(1)
23.6.2 Tidal Breathing Parameters
429(1)
23.6.3 Measurement of Forced Expiratory Flows
430(1)
23.6.4 Multiple-Breath Wash-Out
430(1)
23.6.5 Plethysmography
430(1)
23.6.6 Forced Oscillation and Interrupter Technique
430(2)
23.6.7 Measurement of Exhaled Nitric Oxide
432(1)
23.7 Reference Values in Preschool Age
432(1)
23.8 Potential Role of Lung Function Testing in Preschool Respiratory Disease
433(1)
References
433(2)
Part IV Normal Variation in Lung Function 435(82)
24 Normal Lung Function from Childhood to Old Age
437(26)
Andrew Bush
Michael D.L. Morgan
24.1 Introduction
437(2)
24.2 Influences on Lung Structure
439(5)
24.2.1 Epigenetic Transgenerational Effects
439(1)
24.2.2 Key Stage 1: Antenatal Lung Development
439(1)
24.2.3 Key Stage 2: Lung Growth in Childhood and Adolescence
439(4)
24.2.4 Key Stage 3: the Phase of Lung Function Decline
443(1)
24.2.5 Summary: How do Developmental Structural Changes Manifest?
444(1)
24.3 Physiological Changes in Childhood and Adolescence
444(2)
24.3.1 Early Changes
444(1)
24.3.2 Factors that Influence Development
444(2)
24.4 Puberty and Transition to Adult Lung Function
446(1)
24.4.1 Contribution of Gender
446(1)
24.4.2 Girls and Young Women
447(1)
24.4.3 Boys and Young Men
447(1)
24.5 Lung Function in Early Adulthood
447(1)
24.6 Variation in Lung Function Between Adults
447(2)
24.6.1 Roles of Body Composition
447(1)
24.6.2 Roles of Habitual Activity and Physical Training
448(1)
24.7 Cyclical Variation in Lung Function
449(1)
24.8 Differences in Function Between Men and Women
449(2)
24.8.1 The Effect of Obesity on Lung Function
450(1)
24.9 Menstrual Cycle and Pregnancy
451(1)
24.9.1 Menstrual Cycle
451(1)
24.9.2 Pregnancy
451(1)
24.10 Effects of Age on the Lungs
452(2)
24.10.1 Underlying Considerations
452(1)
24.10.2 Lung Function
453(1)
24.11 Effects of Age on Responses to Exercise
454(2)
24.11.1 Interaction with Ageing of the Lungs
454(1)
24.11.2 Oxygen Consumption, Ventilation, and Breathlessness
454(2)
24.11.3 Contribution of Cardiovascular System
456(1)
References
456(5)
Further Reading
461(1)
Growth of the lungs
461(1)
Effects of age
461(2)
25 Reference Values for Lung Function in White Children and Adults
463(36)
25.1 Basic Considerations
463(3)
25.1.1 Definitions
463(1)
25.1.2 Reference Subjects
464(1)
25.1.3 Quality Control
464(1)
25.1.4 Models (Mathematical Equations) that Form the Basis for Reference Values
465(1)
25.1.5 Strategies for Selecting Reference Values
465(1)
25.2 Preschool Children (Ages 3-6 Years)
466(1)
25.3 Children of School Age
466(6)
25.3.1 Models Based on Stature
466(1)
25.3.2 Empirical Models
467(3)
25.3.3 Reference Values Independent of Body Size
470(1)
25.3.4 Longitudinal Growth Charts (Percentiles)
471(1)
25.4 Young Persons Aged 16-25 Years
472(1)
25.5 Adults Aged 25-65 Years
473(6)
25.6 Adults Aged 65 Years Onwards
479(1)
25.7 Comprehensive Cross-Sectional and Longitudinal Models
479(7)
25.7.1 Cross-Sectional Models
481(1)
25.7.2 Progression of Lung Function Throughout Life
481(5)
25.8 Interpreting Reference Values
486(8)
25.8.1 Making Sense of the Results
494(1)
References
494(4)
Further Reading
498(1)
26 Reference Values for Lung Function in Non-White Adults and Children
499(18)
26.1 Overview
499(5)
26.1.1 Relevance of Race
499(1)
26.1.2 Ethnic Factor in Lung Function
499(1)
26.1.3 Variables Sometimes Linked to Ethnic Group
500(2)
26.1.4 Biases Introduced by Migration
502(1)
26.1.5 Miscegenation: Evidence for Autosomal Inheritance of Lung Function
502(1)
26.1.6 Ethnic Factor in Ventilatory Responses to Exercise and Breathing CO2
502(1)
26.1.7 Inheritance of Lung Function Within Ethnic Groups
503(1)
26.1.8 Reference Variables
503(1)
26.1.9 Technical Factors in Interpretation
503(1)
26.2 Lung Function Analysed by Ethnic Group and Geographical Location
504(8)
26.2.1 South Asia, Including the Indian Subcontinent
504(3)
26.2.2 Mexicans and Hispanic Americans
507(1)
26.2.3 Middle East and North Africa
507(1)
26.2.4 East Asian People
507(1)
26.2.5 Sub-Saharan Africans
508(1)
26.2.6 Oceanians, Including Australian Aboriginals
509(3)
26.3 Perspective
512(1)
References
513(2)
Further Reading
515(2)
Part V Exercise 517(78)
27 Physiology of Exercise and Effects of Lung Disease on Performance
519(34)
27.1 Some Basic Concepts
519(1)
27.2 Oxygen Cost of Exercise
520(2)
27.3 Determinants of Exercise Capacity: an Overview
522(1)
27.4 Respiratory Response to Exercise
523(10)
27.4.1 Introduction
523(1)
27.4.2 Ventilation During Exercise of Constant Intensity
523(1)
27.4.3 Ventilation During Progressive Exercise
524(2)
27.4.4 Respiratory Exchange Ratio
526(1)
27.4.5 Respiratory Frequency and Tidal Volume
527(1)
27.4.6 Anaerobic Threshold: Useful Index or Dangerous Fallacy?
528(1)
27.4.7 Exercise Ventilation in Medical Conditions
529(3)
27.4.8 Maximal Exercise Ventilation
532(1)
27.5 Cardiac Output and Stroke Volume
533(1)
27.5.1 Cardiac Output
533(1)
27.5.2 Stroke Volume
533(1)
27.6 Exercise Cardiac Frequency
534(3)
27.6.1 Numerical Values
534(2)
27.6.2 Indices of fcsubmax
536(1)
27.6.3 Clinical Applications
536(1)
27.7 Breathlessness on Exertion
537(1)
27.7.1 Sensation of Dyspnoea
537(1)
27.7.2 Mechanisms of Breathlessness
537(1)
27.7.3 Clinical Aspects
537(1)
27.7.4 Speculations
538(1)
27.8 Limitation of Exercise
538(4)
27.8.1 Ventilatory Limitation (Including Use of Oxygen)
538(2)
27.8.2 Pulmonary Gas Exchange
540(1)
27.8.3 Cardiac Output and Muscle Blood Flow
540(1)
27.8.4 Tissue Transfer of Oxygen
541(1)
27.9 Events in Muscles
542(3)
27.9.1 Muscle Metabolism
542(1)
27.9.2 Lactate and Pyruvate
543(1)
27.9.3 McArdle's Disease
544(1)
27.10 Role of Gender
545(1)
27.11 Effects of Age
545(1)
27.12 Habitual Activity and Physical Training
545(2)
27.12.1 Overview of Effects
545(1)
27.12.2 Implications for Clinical Exercise Testing
545(2)
References
547(4)
Further Reading
551(2)
28 Exercise Testing and Interpretation, Including Reference Values
553(24)
28.1 Introduction
553(1)
28.2 Reasons for an Exercise Test
553(1)
28.2.1 In Apparently Fit Persons
553(1)
28.2.2 In Respiratory and Other Patients
554(1)
28.3 Exercise Protocols
554(3)
28.3.1 Submaximal Progressive Protocol
554(1)
28.3.2 Submaximal Steady-State Protocol
554(1)
28.3.3 Symptom-Limited Exercise Test (S-LET)
554(1)
28.3.4 Nearly Maximal Exercise Test (Ergocardiography, Bronchial Lability)
555(1)
28.3.5 Maximal Exercise Test (Aerobic Capacity)
556(1)
28.4 Ergometry
557(4)
28.4.1 Choice of Ergometer
557(1)
28.4.2 Treadmill
557(2)
28.4.3 Cycle Ergometry
559(2)
28.4.4 Stepping Exercise
561(1)
28.5 Measurements
561(2)
28.5.1 What Should be Measured?
561(1)
28.5.2 Overview of Equipment
561(1)
28.5.3 Ventilation Minute Volume
562(1)
28.5.4 Gas Analysis
562(1)
28.5.5 Other Measurements
562(1)
28.5.6 Respiratory Symptoms
563(1)
28.6 Conduct of the Test
563(1)
28.7 Data Processing
564(1)
28.8 Interpretation of Data
565(4)
28.8.1 Submaximal Exercise
565(1)
28.8.2 Exercise Limitation
566(3)
28.9 Non-Ergometric and Field Tests
569(1)
28.9.1 Observational Tests
569(1)
28.9.2 Walking Tests
569(1)
28.9.3 Shuttle Tests
569(1)
28.9.4 Harvard Pack Test
570(1)
28.10 Reference Values for Ergometry in Adults
570(3)
References
573(2)
Further Reading
575(2)
29 Assessment of Exercise Limitation, Disability, and Residual Ability
577(10)
29.1 Terminology
577(1)
29.1.1 Respiratory Impairment
577(1)
29.1.2 Respiratory Limitation of Exercise
577(1)
29.1.3 Respiratory Handicap (Participation Restricted)
578(1)
29.2 Causes of Respiratory Disablement
578(1)
29.3 Preliminaries to the Assessment
579(1)
29.3.1 Medical Considerations
579(1)
29.3.2 Review of the Lung Function
580(1)
29.3.3 When is an Exercise Test Needed?
580(1)
29.4 Conduct of the Exercise Test
580(1)
29.4.1 Practical Considerations
580(1)
29.4.2 Avoiding Non-Cooperation
581(1)
29.4.3 Special Role of the Person Conducting the Test
581(1)
29.5 Interpreting the Exercise Test
581(3)
29.5.1 Type of Limitation
581(2)
29.5.2 Scoring Loss of Exercise Capacity (Disability)
583(1)
29.5.3 Underperformance
584(1)
29.6 Residual Ability
584(1)
29.7 Relevance for Compensation
584(1)
29.8 Summary
585(1)
References
585(1)
Further Reading
586(1)
30 Exercise in Children
587(8)
Andrew Bush
30.1 Introduction
587(1)
30.2 Indications for Exercise Testing in Children
588(1)
30.3 Methods
589(1)
30.4 Normal Response to Exercise in Children
589(3)
30.5 Special Indications for Exercise Testing in Children
592(1)
30.6 When There is a Discrepancy between Symptoms and Baseline Lung Function
592(1)
30.7 Assessment of Prognosis in Cases of Respiratory Disease
592(1)
30.8 Assessment of EILO
592(1)
30.9 Understanding the Physiology of Disease
592(1)
30.10 Summary and Conclusions
593(1)
References
593(2)
Part VI Breathing During Sleep 595(20)
31 Breathing During Sleep and its Investigation
597(18)
Joerg Steier
31.1 Introduction
597(1)
31.2 Terminology and Definitions
597(1)
31.3 Investigative Techniques
598(2)
31.3.1 Sleep Staging
598(1)
31.3.2 Nasal and Oral Airflow
598(1)
31.3.3 Abdominal/Thoracic Movement
599(1)
31.3.4 Arterial Oxygen Saturation
599(1)
31.3.5 Pa,O2 and Pa,CO2
599(1)
31.3.6 Snoring
599(1)
31.3.7 Heart Rate
599(1)
31.3.8 Movement and Posture
600(1)
31.4 Sleep Studies
600(1)
31.4.1 Polysomnography
600(1)
31.4.2 Limited Respiratory Sleep Studies
600(1)
31.4.3 Screening for Sleep-Disordered Breathing
601(1)
31.5 Sleepiness
601(1)
31.6 Respiratory Physiology in Sleep
602(2)
31.6.1 Sleep Levels
602(1)
31.6.2 CO2 and O2 Responses
603(1)
31.6.3 Upper Airway
603(1)
31.6.4 Thorax
604(1)
31.7 Respiratory Pathophysiology in Sleep
604(2)
31.7.1 Upper Airway Control
604(1)
31.7.2 Central Control
605(1)
31.8 Clinical Syndromes of Sleep-Disordered Breathing
606(1)
31.8.1 Obstructive Sleep Apnoea (OSA)
606(1)
31.8.2 Central Sleep Apnoea (CSA)
606(1)
31.8.3 Mixed Sleep Apnoea
607(1)
31.8.4 Upper Airway Resistance Syndrome (UARS)
607(1)
31.8.5 Obesity Hypoventilation Syndrome
607(1)
31.9 Treatment of Sleep-Disordered Breathing
607(2)
31.9.1 Obstructive Sleep Apnoea
607(2)
31.9.2 Central Sleep Apnoea
609(1)
31.10 Respiratory Conditions Affected by Sleep
609(1)
31.10.1 Asthma
609(1)
31.10.2 Chronic Obstructive Pulmonary Disease
609(1)
31.10.3 Neuromuscular and Skeletal Disorders
609(1)
References
610(4)
Further Reading
614(1)
Part VII Potentially Adverse Environments 615(46)
32 Hypobaria
617(22)
James Milledge
32.1 Introduction
617(1)
32.2 The Atmosphere and Physiological Effects of Hypobaria
618(5)
32.2.1 Atmospheric Pressure
618(1)
32.2.2 Atmospheric Temperature
618(1)
32.2.3 Atmospheric Ozone
618(1)
32.2.4 Cosmic Radiation
618(1)
32.2.5 O2 and CO2 Partial Pressures at Altitude
619(3)
32.2.6 Exercise at Altitude
622(1)
32.3 Effects of Altitude on Lung Function in Lowlanders
623(2)
32.3.1 Peak Expiratory Flow
623(1)
32.3.2 Bronchoconstriction, Hypoxia, and Hypocapnia
624(1)
32.3.3 Subclinical Oedema
624(1)
32.3.4 Lung Diffusing Capacity
624(1)
32.4 Effects of Lifelong Residence at Altitude on Lung Function
625(1)
32.4.1 Lung Volumes
625(1)
32.4.2 Chronic Mountain Sickness and High-Altitude Pulmonary Hypertension
625(1)
32.4.3 Genetics of High-Altitude Residents Compared with Lowlanders
626(1)
32.4.4 Genetics of Chronic Mountain Sickness
626(1)
32.5 Coping with Altitude
626(1)
32.6 High-Altitude Illness
627(1)
32.6.1 Acute Mountain Sickness
627(1)
32.6.2 High-Altitude Cerebral Oedema
627(1)
32.6.3 High-Altitude Pulmonary Oedema
627(1)
32.7 Physiology and Medicine of Flight
628(1)
32.7.1 The Aircraft Cabin
628(1)
32.7.2 Mechanical Effects of Pressure Change
629(1)
32.7.3 Assessment of Aircrew
629(1)
32.8 Fitness to Fly as a Passenger
629(2)
32.8.1 On-Board Oxygen
630(1)
32.8.2 Deep Vein Thrombosis and Venous Thromboembolism
630(1)
32.9 Altitude-Induced Decompression Illness
631(1)
References
632(4)
Further Reading
636(3)
33 Immersion in Water, Hyperbaria, and Hyperoxia Including Oxygen Therapy
639(14)
Einar Thorsen
33.1 Introduction
639(1)
33.2 Surviving at the Air-Water Interface (Including Drowning)
640(1)
33.3 Effects of Diving on Lung Function
641(3)
33.3.1 Immersion and Dives with Breathholding
641(1)
33.3.2 Deep Dives
642(2)
33.3.3 Pathological and Adaptive Changes in the Lungs
644(1)
33.4 Barotrauma in Divers and Submariners
644(1)
33.5 Decompression Sickness
645(1)
33.5.1 Features
645(1)
33.5.2 Prophylaxis (Including Saturation Dives)
646(1)
33.5.3 Diving Strategies
646(1)
33.6 Screening for Fitness to Dive
646(1)
33.7 Hyperoxia
646(4)
33.7.1 Summary of O2 Therapy
646(2)
33.7.2 Pathological Effects of a Raised Oxygen Tension
648(1)
33.7.3 Hyperbaric O2 Therapy
649(1)
References
650(2)
Further Reading
652(1)
34 Effects of Cold and Heat on the Lung
653(8)
Malcolm Sue-Chu
Pascale Kippelen
34.1 Acute Effects of Cooling on the Lungs
653(2)
34.1.1 Lower Airway Cooling
653(1)
34.1.2 Upper Airway Cooling
654(1)
34.1.3 Facial Cooling
654(1)
34.1.4 Whole Body Cooling
654(1)
34.2 Chronic Effects of Cooling on the Lungs
655(1)
34.2.1 Residents of Cold Climates
655(1)
34.2.2 Cold Weather Athletes
656(1)
34.2.3 Patients
656(1)
34.3 Impact of Hot Air Breathing
656(2)
34.3.1 Breathing Pattern in Hot Environments
656(1)
34.3.2 Airway Calibre in Hot Environments
657(1)
References
658(3)
Part VIII Lung Function in Clinical Practice 661(90)
35 Strategies for Assessment of Lung Function
663(10)
James Hull
35.1 Introduction
663(1)
35.2 Techniques Available - Standard Tests
664(2)
35.2.1 Pulse Oximetry and Arterial Blood Gas Measurement
664(1)
35.2.2 Peak Flow, Spirometry, and Flow-Volume Loops
664(1)
35.2.3 Static Lung Volumes
665(1)
35.2.4 Airway Resistance
665(1)
35.2.5 Gas Transfer
666(1)
35.3 Techniques Available - Specialist Tests
666(2)
35.3.1 Exercise Testing
666(1)
35.3.2 Airway Responsiveness
666(1)
35.3.3 Airway Inflammation - Exhaled Nitric Oxide
667(1)
35.3.4 Respiratory Muscle Strength
667(1)
35.3.5 Compliance
667(1)
35.3.6 Sleep Studies
667(1)
35.4 Imaging Modalities and their Role in Assessment
668(1)
35.5 Strategies for Disease Assessment
668(2)
35.6 Interpretive Strategy/Algorithm for Patients With Dyspnoea
670(1)
References
670(3)
36 Patterns of Abnormal Lung Function in Lung Disease
673(8)
William Kinnear
36.1 Classical Patterns
673(1)
36.1.1 Lung Function Tests in the Era of High-Resolution CT Scanning
673(1)
36.1.2 Test Quality and Normal Ranges
673(1)
36.2 Spirometry
673(1)
36.2.1 Restriction
673(1)
36.2.2 Obstruction
674(1)
36.3 Lung Volumes
674(2)
36.3.1 Restriction
674(1)
36.3.2 Obstruction
675(1)
36.4 Gas Transfer
676(2)
36.4.1 Tl,CO
676(1)
36.4.2 KCO
676(1)
36.4.3 Restrictive Defect, Low Tl,CO, Low KCO
676(2)
References
678(3)
37 Lung Function in Asthma, Chronic Obstructive Pulmonary Disease, and Lung Fibrosis
681(16)
Wim Janssens
Pascal Van Bleyenbergh
37.1 Introduction
681(1)
37.2 Asthma
681(4)
37.2.1 Spirometry and Peak Expiratory Flow
681(1)
37.2.2 Reversibility and Airways Resistance
682(1)
37.2.3 Bronchial Hyper-Responsiveness
683(1)
37.2.4 Lung Volumes and Diffusing Capacity
683(1)
37.2.5 Fractional Exhaled Nitric Oxide (FENO)
684(1)
37.2.6 Illustrative Case
684(1)
37.3 Chronic Obstructive Pulmonary Disease and Emphysema
685(5)
37.3.1 Spirometry
685(3)
37.3.2 Reversibility and Airway Resistance
688(1)
37.3.3 Lung Volumes
688(1)
37.3.4 Gas Transfer and Diffusing Capacity
689(1)
37.3.5 Illustrative Case
689(1)
37.4 Diffuse Lung Fibrosis (Diffuse Interstitial Lung Disease)
690(3)
37.4.1 Spirometry and Resistance
690(1)
37.4.2 Lung Volumes
691(1)
37.4.3 Gas Transfer
691(1)
37.4.4 Compliance
692(1)
37.4.5 Illustrative Case
692(1)
References
693(4)
38 Lung Function in Specific Respiratory and Systemic Diseases
697(32)
Stephen J. Bourke
38.1 Introduction
697(1)
38.2 Extrapulmonary Airways
697(1)
38.2.1 Laryngeal Disorders
697(1)
38.2.2 Tracheal Disease
698(1)
38.3 Intrapulmonary Airways
698(2)
38.3.1 Bronchiectasis
698(1)
38.3.2 Cystic Fibrosis
699(1)
38.3.3 Bronchiolitis
700(1)
38.4 The Alveoli
700(2)
38.4.1 Pneumonia
700(1)
38.4.2 Pneumocystis Pneumonia and HIV Infection
701(1)
38.4.3 Hypersensitivity Pneumonitis
701(1)
38.4.4 Sarcoidosis
701(1)
38.4.5 Drug-Induced Alveolitis
702(1)
38.4.6 Radiation Pneumonitis
702(1)
38.4.7 Acute Respiratory Distress Syndrome
702(1)
38.5 Pulmonary Vascular Disease
702(2)
38.5.1 Pulmonary Embolism
703(1)
38.5.2 Fat Embolism
703(1)
38.5.3 Pulmonary Hypertension
703(1)
38.5.4 Pulmonary Veno-Occlusive Disease
704(1)
38.5.5 Arteriovenous Malformations
704(1)
38.6 The Pleura
704(1)
38.7 The Chest Wall
704(1)
38.7.1 Flail Segment
704(1)
38.7.2 Pectus Excavatum and Pectus Carinatum
704(1)
38.7.3 Kyphoscoliosis
705(1)
38.7.4 Sternotomy/Thoracotomy
705(1)
38.7.5 Thoracoplasty
705(1)
38.7.6 Ankylosing Spondylitis
705(1)
38.7.7 Obesity
705(1)
38.8 Neuromuscular Disease
705(2)
38.8.1 Brain Stem Failure
706(1)
38.8.2 Disease of the Motor Neurone
706(1)
38.8.3 Phrenic Neuropathy, Guillain-Barre Syndrome
706(1)
38.8.4 Myasthenia, Muscular Dystrophies, Myositis
707(1)
38.8.5 Parkinson Disease
707(1)
38.8.6 Multiple Sclerosis
707(1)
38.9 Rare Pulmonary Diseases
707(2)
38.9.1 Unilateral Hyperlucent Lung
707(1)
38.9.2 α1Antitrypsin Deficiency
707(1)
38.9.3 Pulmonary Alveolar Microlithiasis
708(1)
38.9.4 Pulmonary Alveolar Proteinosis
708(1)
38.9.5 Pulmonary Langerhans Cell Histiocytosis
708(1)
38.9.6 Lymphangioleiomyomatosis and Tuberous Sclerosis
708(1)
38.9.7 Behcet Disease
709(1)
38.9.8 Idiopathic Pulmonary Haemosiderosis
709(1)
38.9.9 Pulmonary Amyloidosis
709(1)
38.10 Haematological Diseases
709(2)
38.10.1 Anaemia and Polycythaemia
709(1)
38.10.2 Methaemoglobinaemia
710(1)
38.10.3 Carboxyhaemoglobinaemia
710(1)
38.10.4 Sulfhaemoglobinaemia
710(1)
38.10.5 Sickle Cell Disease
710(1)
38.10.6 Bone Marrow Transplantation
711(1)
38.11 Cardiac Disease
711(1)
38.11.1 Left Heart Failure
711(1)
38.11.2 Congenital Heart Disease
712(1)
38.12 Connective Tissue Diseases
712(1)
38.12.1 Rheumatoid Disease
712(1)
38.12.2 Systemic Lupus Erythematosus
712(1)
38.12.3 Sjogren Syndrome
713(1)
38.12.4 Systemic Sclerosis
713(1)
38.12.5 Marfan Syndrome
713(1)
38.12.6 Ehlers-Danlos Syndrome and Cutis Laxa
713(1)
38.13 Liver Disease
713(1)
38.13.1 Ascites
713(1)
38.13.2 Hepatopulmonary Syndrome
714(1)
38.13.3 Portopulmonary Hypertension
714(1)
38.14 Renal Disease
714(1)
38.14.1 Pulmonary Haemorrhagic Syndromes
714(1)
38.14.2 Dialysis and Chronic Renal Failure
714(1)
38.15 Gastrointestinal Disease
715(1)
38.15.1 Coeliac Disease and Inflammatory Bowel Disease
715(1)
38.16 Endocrine Disease
715(1)
38.16.1 Diabetes
715(1)
38.16.2 Thyroid Disease
715(1)
38.16.3 Pituitary Disease
716(1)
References
716(13)
39 Pulmonary Rehabilitation
729(8)
Sally Singh
39.1 Introduction
729(1)
39.2 Limitation of Exercise in Lung Disease
729(2)
39.2.1 Ventilatory Limitation
730(1)
39.2.2 Energy Cost of Breathing
730(1)
39.2.3 Impaired Gas Exchange
730(1)
39.2.4 Muscle Dysfunction
731(1)
39.2.5 Cardiovascular Dysfunction
731(1)
39.3 Assessment for Pulmonary Rehabilitation Programmes
731(2)
39.3.1 Perspective
731(1)
39.3.2 Assessment of Breathlessness
731(1)
39.3.3 Quality of Life Assessment
732(1)
39.3.4 Functional Assessment
732(1)
39.4 Components of Pulmonary Rehabilitation Programmes
733(1)
39.4.1 Exercise Component
733(1)
39.4.2 Respiratory Muscle Training
733(1)
References
733(4)
40 Lung Function in Relation to Surgery, Anaesthesia, and Intensive Care
737(14)
Goran Hedenstierna
40.1 Introduction
737(1)
40.2 Pre-Operative Evaluation of Respiratory Function
737(3)
40.2.1 Airway and Thoracic Anatomy
738(1)
40.2.2 Spirometry and Other Lung Function Tests
738(1)
40.2.3 Muscle Function
738(1)
40.2.4 Premedication and General Anaesthesia
739(1)
40.2.5 Special Considerations
739(1)
40.3 Respiratory Function During Anaesthesia
740(4)
40.3.1 Upper Airway
740(1)
40.3.2 Respiratory Mechanics
740(3)
40.3.3 Distribution of Ventilation and Lung Perfusion
743(1)
40.3.4 Ventilatory Responses to Anaesthesia
743(1)
40.3.5 Inflammatory Reaction of the Lung
744(1)
40.4 Respiratory Function and Mechanical Ventilation in the Critically Ill
744(3)
40.4.1 Acute Lung Injury and Acute Respiratory Distress Syndrome
744(1)
40.4.2 Ventilator-Induced Lung Injury
744(1)
40.4.3 High Inspired Oxygen Concentration and Infection
745(1)
40.4.4 Ventilatory Management in the Postoperative Period and in Critically Ill Adults
745(2)
References
747(4)
Index 751
John Cotes, PhD, (deceased), was a respiratory physiologist who played a key role in the conquest of Everest in 1953. He also played prominent roles in the European Respiratory Society, the Thoracic Society, and the Association of Respiratory Technicians and Physiologists, and was an honorary fellow of the Faculty of Occupational Medicine.

Robert L. Maynard, CBE, FRCP, FRCPath, is an Honorary Professor of Environmental Medicine at the University of Birmingham, Birmingham, UK.

Sarah J. Pearce, FRCP, is Formerly Consultant Physician at County Durham and Darlington NHS Foundation Trust, Darlington, UK.

Benoit B. Nemery, MD, PhD, is Professor of Toxicology & Occupational Medicine for the Faculty of Medicine at the Department of Public Health and Primary Care, KU Leuven, Belgium.

Peter D. Wagner, MD, is Distinguished Professor of Medicine & Bioengineering at the University of California, San Diego, CA, USA.

Brendan G. Cooper, PhD, FERS, FRSB, is Consultant Clinical Scientist in Respiratory and Sleep Physiology at University Hospital Birmingham and holds an Honorary Professorship in Respiratory & Sleep Physiology at the University of Birmingham, Birmingham, UK.