Preface |
|
v | |
|
|
1 | (14) |
|
1.1 Brief history of bioinformatics |
|
|
3 | (3) |
|
1.2 Database application in bioinformatics |
|
|
6 | (2) |
|
1.3 Web tools and services for sequence homology Alignment |
|
|
8 | (2) |
|
1.3.1 Web tools and services for protein functional site identification |
|
|
9 | (1) |
|
1.3.2 Web tools and services for other biological data |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.5 The contribution of information technology |
|
|
11 | (1) |
|
|
12 | (3) |
|
2 Introduction to Unsupervised Learning |
|
|
15 | (9) |
|
3 Probability Density Estimation Approaches |
|
|
24 | (14) |
|
|
24 | (1) |
|
|
25 | (3) |
|
3.3 Non-parametric approach |
|
|
28 | (8) |
|
3.3.1 K-nearest neighbour approach |
|
|
28 | (1) |
|
|
29 | (7) |
|
|
36 | (2) |
|
|
38 | (14) |
|
|
38 | (1) |
|
4.2 Principal component analysis |
|
|
39 | (3) |
|
4.3 An application of PCA |
|
|
42 | (4) |
|
4.4 Multi-dimensional scaling |
|
|
46 | (2) |
|
4.5 Application of the Sammon algorithm to gene data |
|
|
48 | (2) |
|
|
50 | (2) |
|
|
52 | (17) |
|
5.1 Hierarchical clustering |
|
|
52 | (3) |
|
|
55 | (3) |
|
|
58 | (2) |
|
5.4 Gaussian mixture models |
|
|
60 | (4) |
|
5.5 Application of clustering algorithms to the Burkholderia pseudomallei gene expression data |
|
|
64 | (3) |
|
|
67 | (2) |
|
|
69 | (23) |
|
|
69 | (4) |
|
|
73 | (2) |
|
6.3 SOM learning algorithm |
|
|
75 | (4) |
|
6.4 Using SOM for classification |
|
|
79 | (2) |
|
6.5 Bioinformatics applications of VQ and SOM |
|
|
81 | (5) |
|
|
81 | (2) |
|
6.5.2 Gene expression data analysis |
|
|
83 | (3) |
|
6.5.3 Metabolite data analysis |
|
|
86 | (1) |
|
6.6 A case study of gene expression data analysis |
|
|
86 | (2) |
|
6.7 A case study of sequence data analysis |
|
|
88 | (2) |
|
|
90 | (2) |
|
7 Introduction to Supervised Learning |
|
|
92 | (12) |
|
|
92 | (2) |
|
|
94 | (2) |
|
|
96 | (5) |
|
|
101 | (2) |
|
7.5 Bayes rule for classification |
|
|
103 | (1) |
|
|
103 | (1) |
|
8 Linear/Quadratic Discriminant Analysis and K-nearest Neighbour |
|
|
104 | (16) |
|
8.1 Linear discriminant analysis |
|
|
104 | (5) |
|
8.2 Generalised discriminant analysis |
|
|
109 | (2) |
|
|
111 | (7) |
|
8.4 KNN for gene data analysis |
|
|
118 | (1) |
|
|
118 | (2) |
|
9 Classification and Regression Trees, Random Forest Algorithm |
|
|
120 | (13) |
|
|
120 | (1) |
|
9.2 Basic principle for constructing a classification tree |
|
|
121 | (4) |
|
9.3 Classification and regression tree |
|
|
125 | (1) |
|
9.4 CART for compound pathway involvement prediction |
|
|
126 | (2) |
|
9.5 The random forest algorithm |
|
|
128 | (1) |
|
9.6 RF for analyzing Burkholderia pseudomallei gene expression profiles |
|
|
129 | (3) |
|
|
132 | (1) |
|
10 Multi-layer Perceptron |
|
|
133 | (21) |
|
|
133 | (4) |
|
|
137 | (8) |
|
10.2.1 Parameterization of a neural network |
|
|
137 | (1) |
|
|
137 | (8) |
|
|
145 | (3) |
|
|
145 | (1) |
|
|
146 | (1) |
|
|
147 | (1) |
|
10.4 Applications to bioinformatics |
|
|
148 | (2) |
|
10.4.1 Bio-chemical data analysis |
|
|
148 | (1) |
|
10.4.2 Gene expression data analysis |
|
|
149 | (1) |
|
10.4.3 Protein structure data analysis |
|
|
149 | (1) |
|
10.4.4 Bio-marker identification |
|
|
150 | (1) |
|
10.5 A case study on Burkholderia pseudomallei gene expression data |
|
|
150 | (3) |
|
|
153 | (1) |
|
11 Basis Function Approach and Vector Machines |
|
|
154 | (23) |
|
|
154 | (2) |
|
11.2 Radial-basis function neural network (RBFNN) |
|
|
156 | (6) |
|
11.3 Bio-basis function neural network |
|
|
162 | (6) |
|
11.4 Support vector machine |
|
|
168 | (5) |
|
11.5 Relevance vector machine |
|
|
173 | (3) |
|
|
176 | (1) |
|
|
177 | (18) |
|
|
177 | (2) |
|
|
179 | (12) |
|
12.2.1 General definition |
|
|
179 | (4) |
|
|
183 | (1) |
|
|
184 | (4) |
|
|
188 | (1) |
|
|
189 | (2) |
|
12.3 HMM for sequence classification |
|
|
191 | (3) |
|
|
194 | (1) |
|
|
195 | (18) |
|
|
195 | (9) |
|
|
196 | (3) |
|
|
199 | (1) |
|
13.1.3 Partial least square regression (PLS) algorithm |
|
|
200 | (4) |
|
|
204 | (1) |
|
13.3 Heuristic strategy - orthogonal least square approach |
|
|
204 | (4) |
|
13.4 Criteria for feature selection |
|
|
208 | (4) |
|
13.4.1 Correlation measure |
|
|
209 | (1) |
|
13.4.2 Fisher ratio measure |
|
|
210 | (1) |
|
13.4.3 Mutual information approach |
|
|
210 | (2) |
|
|
212 | (1) |
|
14 Feature Extraction (Biological Data Coding) |
|
|
213 | (12) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
|
216 | (8) |
|
14.4.1 Peptide feature extraction |
|
|
216 | (6) |
|
14.4.2 Whole sequence feature extraction |
|
|
222 | (2) |
|
|
224 | (1) |
|
15 Sequence/Structural Bioinformatics Foundation - Peptide Classification |
|
|
225 | (13) |
|
15.1 Nitration site prediction |
|
|
225 | (5) |
|
15.2 Plant promoter region prediction |
|
|
230 | (7) |
|
|
237 | (1) |
|
16 Gene Network - Causal Network and Bayesian Networks |
|
|
238 | (15) |
|
16.1 Gene regulatory network |
|
|
238 | (3) |
|
16.2 Causal networks, networks, graphs |
|
|
241 | (1) |
|
16.3 A brief review of the probability |
|
|
242 | (3) |
|
16.4 Discrete Bayesian network |
|
|
245 | (1) |
|
16.5 Inference with discrete Bayesian network |
|
|
246 | (1) |
|
16.6 Learning discrete Bayesian network |
|
|
247 | (1) |
|
16.7 Bayesian networks for gene regulartory networks |
|
|
247 | (1) |
|
16.8 Bayesian networks for discovering peptide patterns |
|
|
248 | (1) |
|
16.9 Bayesian networks for analysing Burkholderia pseudomallei gene data |
|
|
249 | (3) |
|
|
252 | (1) |
|
|
253 | (16) |
|
17.1 Michealis-Menten change law |
|
|
253 | (3) |
|
|
256 | (3) |
|
17.3 Simplification of an S-system |
|
|
259 | (1) |
|
17.4 Approaches for structure identification and parameter estimation |
|
|
260 | (2) |
|
17.4.1 Neural network approach |
|
|
260 | (1) |
|
17.4.2 Simulated annealing approach |
|
|
261 | (1) |
|
17.4.3 Evolutionary computation approach |
|
|
262 | (1) |
|
17.5 Steady-state analysis of an S-system |
|
|
262 | (5) |
|
17.6 Sensitivity of an S-system |
|
|
267 | (1) |
|
|
268 | (1) |
|
|
269 | (10) |
|
|
270 | (2) |
|
18.2 Gene regulatory network construction |
|
|
272 | (2) |
|
18.3 Building models using incomplete data |
|
|
274 | (1) |
|
18.4 Biomarker detection from gene expression data |
|
|
275 | (3) |
|
|
278 | (1) |
References |
|
279 | (40) |
Index |
|
319 | |