Atjaunināt sīkdatņu piekrišanu

Machine Learning for Archaeological Applications in R [Mīkstie vāki]

(Escuela Nacional de Antropologķa e Historia), (Instituto Nacional de Antropologķa e Historia), (Instituto Nacional de Antropologķa e Historia), (Philipps-Universität Marburg, Germany)
  • Formāts: Paperback / softback, 96 pages, height x width x depth: 229x152x5 mm, weight: 155 g, Worked examples or Exercises
  • Sērija : Elements in Current Archaeological Tools and Techniques
  • Izdošanas datums: 16-Jan-2025
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1009506641
  • ISBN-13: 9781009506649
Citas grāmatas par šo tēmu:
  • Mīkstie vāki
  • Cena: 26,11 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Paperback / softback, 96 pages, height x width x depth: 229x152x5 mm, weight: 155 g, Worked examples or Exercises
  • Sērija : Elements in Current Archaeological Tools and Techniques
  • Izdošanas datums: 16-Jan-2025
  • Izdevniecība: Cambridge University Press
  • ISBN-10: 1009506641
  • ISBN-13: 9781009506649
Citas grāmatas par šo tēmu:
This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. These run in both high- and low-dimensional environments and often have better results than traditional methods. Instead of a theoretical approach, it provides examples of how to apply these methods to real data using lithic and ceramic archaeological materials as case studies. A detailed explanation of how to process data in R (The R Project for Statistical Computing), as well as the respective code, are also provided.

This Element highlights the employment within archaeology of classification methods developed in the field of chemometrics, artificial intelligence, and Bayesian statistics. It also provides a detailed explanation of how to process data in R as well as the respective code.

Papildus informācija

This Element highlights the employment within archaeology of classification methods in chemometrics, AI, and Bayesian statistics.
1. Introduction;
2. Processing spectral data;
3. Processing
compositional data;
4. Processing a combination of spectral and compositional
data;
5. Final comments; Abbreviations; References.