Atjaunināt sīkdatņu piekrišanu

E-grāmata: Machine Learning: The Basics

  • Formāts - PDF+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Machine learning (ML) has become a commonplace element in our everyday lives and a standard tool for many fields of science and engineering. To make optimal use of ML, it is essential to understand its underlying principles. 

This book approaches ML as the computational implementation of the scientific principle. This principle consists of continuously adapting a model of a given data-generating phenomenon by minimizing some form of loss incurred by its predictions. 

The book trains readers to break down various ML applications and methods in terms of data, model, and loss, thus helping them to choose from the vast range of ready-made ML methods.

The book’s three-component approach to ML provides uniform coverage of a wide range of concepts and techniques. As a case in point, techniques for regularization, privacy-preservation as well as explainability amount to specific design choices for the model, data, and loss of a ML method. 

Recenzijas

The book under review matured from lecture notes . The structure and style strongly recommend the book as a thorough entry point for studying ML; the exercises and the references concluding each chapter reinforce concepts and also provide a curated guidance for further steps. The (text)book reaches a balance between mathematical details, overview of algorithms and examples, making it suitable for a wide range of readers, and further underlining the interdisciplinary character of machine learning. (Irina Ioana Mohorianu, zbMATH 1530.68002, 2024)

Introduction.- Components of ML.- The Landscape of ML.- Empirical Risk Minimization.- Gradient-Based Learning.- Model Validation and Selection.- Regularization.- Clustering.- Feature Learning.- Transparant and Explainable ML.
Alexander Jung is Assistant Professor of Machine Learning at the Department of Computer Science, Aalto University where he leads the research group "Machine Learning for Big Data". His courses on machine learning, artificial intelligence, and convex optimization are among the most popular courses offered at Aalto University. He received a Best Student Paper Award at the premium signal processing conference IEEE ICASSP in 2011, an Amazon Web Services Machine Learning Award in 2018, and was elected as Teacher of the Year by the Department of Computer Science in 2018. He serves as an Associate Editor for the IEEE Signal Processing Letters.