Atjaunināt sīkdatņu piekrišanu

E-grāmata: Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence and Analysis

Edited by
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 291,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"This book provides a comprehensive overview of machine learning research and technology in medical decision-making based on medical images"--Provided by publisher.

Researchers in electronics and computers, but also some in radiology report their recent findings regarding the use of machine learning in computer-aided diagnosis and medical image analysis. Such technologies have reached the practical level, they say, and are rapidly becoming available in clinical practice in hospitals. The cover imaging of the breast, the thorax, the abdomen, the brain, and the whole body. Among specific topics are digital image processing and machine learning techniques for detecting architectural distortion in prior mammograms, techniques for the automated segmentation of the lung in thoracic computed tomography scans, content-based image retrieval for medical image analysis, autism diagnostics by the three-dimensional shape analysis of the corpus callosum, and applying machine learning in real-time tumor localization. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)
Foreword xvi
Preface xvii
Acknowledgment xxii
Section 1 Breast Imaging
Chapter 1 Robustness Studies of Ultrasound CADx in Breast Cancer Diagnosis
1(22)
Nicholas P. Gruszanskas
Karen Drukker
Maryellen L. Giger
Chapter 2 Digital Image Processing and Machine Learning Techniques for the Detection of Architectural Distortion in Prior Mammograms
23(43)
Shantanu Banik
Rangaraj M. Rangayyan
J.E. Leo Desaulels
Chapter 3 Computer-Aided Detection and Diagnosis for 3D X-Ray Based Breast Imaging
66(20)
Gautam S. Muralidhar
Alan C. Bovik
Mia K. Markey
Chapter 4 Relevance Feedback as New Tool for Computer-Aided Diagnosis in Image Databases
86(21)
Issam El Naqa
Jung Hun Oh
Yongyi Yang
Chapter 5 Advanced Fuzzy Methods for Mammography Image Analysis
107(15)
Farhang Sahba
Anastasios Venetsanopoulos
Gerald Schaefer
Section 2 Thoracic Imaging
Chapter 6 Computerized Detection of Lung Nodules on Chest Radiographs: Application of Bone Suppression Imaging by Means of Multiple Massive-Training ANNs
122(23)
Sheng Chen
Kenji Suzuki
Chapter 7 Techniques for the Automated Segmentation of Lung in Thoracic Computed Tomography Scans
145(14)
William F. Sensakovic
Samuel G. Armato
Chapter 8 Clinical Machine Learning in Action: CAD System Design, Development, Tuning, and Long-Term Experience
159(19)
Yoshitaka Masutani
Mitsutaka Nemoto
Yukihiro Nomura
Naoto Hayashi
Section 3 Abdominal Imaging
Chapter 9 Computer-Aided Detection of Polyps in CT Colonography by Means of Feature Selection and Massive-Training Support Vector Regression
178(24)
Jian-Wu Xu
Kenji Suzuki
Chapter 10 Content-Based Image Retrieval for Medical Image Analysis
202(18)
Jianhua Yao
Ronald M. Summers
Chapter 11 A Model-Driven Bayesian Method for Polyp Detection and False Positive Suppression in CT Colonography Computer-Aided Detection
220(18)
Xujiong Ye
Greg Slabaugh
Chapter 12 Computer-Aided Image Analysis and Detection of Prostate Cancer: Using Immunostaining for Alpha-Methylacyl-CoA Racemase, p63, and High-Molecular-Weight Cytokeratin
238(20)
Yahui Peng
Yulei Jiang
Ximing J. Yang
Section 4 Brain Imaging
Chapter 13 Magnetic Resonance Image Analysis for Brain CAD Systems with Machine Learning
258(39)
Hidetaka Arimura
Chiaki Tokunaga
Yasuo Yamashita
Jumpei Kuwazuru
Chapter 14 CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI
297(18)
Jing Huo
Matthew S. Brown
Kazunori Okada
Chapter 15 Autism Diagnostics by 3D Shape Analysis of the Corpus Callosum
315(21)
Ahmed Elnakib
Manuel F. Casanova
Georgy Gimel'farb
Ayman El-Baz
Chapter 16 Neuroimage Classification for Early Diagnosis of Alzheimer's Disease
336(15)
Yong Fan
Christos Davatzikos
Chapter 17 Manifold Learning for Medical Image Registration, Segmentation, and Classification
351(23)
Paul Aljabar
Robin Wolz
Daniel Rueckert
Section 5 Body Imaging
Chapter 18 Learning Manifolds: Design Analysis for Medical Applications
374(29)
Diana Mateus
Christian Wachinger
Selen Atasoy
Loren Schwarz
Nassir Navab
Chapter 19 Automatic Organ Localization on X-Ray CT Images by Using Ensemble-Learning Techniques
403(16)
Xiangrong Zhou
Hiroshi Fujita
Chapter 20 Applications of Machine Learning in Real-Time Tumor Localization
419(13)
Ruijiang Li
Steve B. Jiang
Compilation of References 432(54)
About the Contributors 486(12)
Index 498