Atjaunināt sīkdatņu piekrišanu

E-grāmata: Machine Learning and Data Mining for Sports Analytics: 9th International Workshop, MLSA 2022, Grenoble, France, September 19, 2022, Revised Selected Papers

Edited by , Edited by , Edited by , Edited by
  • Formāts - EPUB+DRM
  • Cena: 65,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 9th International Workshop on Machine Learning and Data Mining for Sports Analytics, MLSA 2022, held in Grenoble, France, during September 19, 2022. 

The 10 full papers included in this book were carefully reviewed and selected from 18 submissions. They were organized in topical sections as follows: Football, Racket sports, Cycling.
Football.- Towards expected counter - Using comprehensible features to
predict counterattacks.- Shot analysis in different levels of German football
using Expected Goals.- Analyzing passing sequences for the prediction of
goal-scoring opportunities.- Lets penetrate the defense: A machine learning
model for prediction and valuation of penetrative passes.- Evaluation of
creating scoring opportunities for teammates in soccer via trajectory
prediction.- Cost-efficient and bias-robust sports player tracking by
integrating GPS and video.- Racket sports.- Predicting tennis serve
directions with machine learning.- Discovering and visualizing tactics in
table tennis games based on subgroup discovery.- Cycling.- Athlete monitoring
in professional road cycling using similarity search on time series data.