Preface |
|
xv | |
Acknowledgment |
|
xvii | |
About the Authors |
|
xix | |
Introduction |
|
xxi | |
|
|
1 | (14) |
|
1.1 Introduction to Data Science |
|
|
1 | (1) |
|
|
1 | (1) |
|
|
1 | (1) |
|
1.2 Describing Structural Patterns |
|
|
2 | (1) |
|
1.2.1 Uses of Structural Patterns |
|
|
2 | (1) |
|
1.3 Machine Learning and Statistics |
|
|
3 | (1) |
|
1.4 Relation between Artificial Intelligence, Machine Learning, Neural Networks, and Deep Learning |
|
|
4 | (2) |
|
1.5 Data Science Life Cycle |
|
|
6 | (2) |
|
1.6 Key Role of Data Scientist |
|
|
8 | (1) |
|
1.6.1 Difference between Data Scientist and Machine Learning Engineer |
|
|
8 | (1) |
|
|
8 | (1) |
|
|
9 | (6) |
|
1.8.1 Financial and Insurance Industries |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.8.1.2 Personalized Pricing |
|
|
10 | (1) |
|
1.8.1.3 AML -- Anti-Money Laundering |
|
|
10 | (1) |
|
|
11 | (1) |
|
1.8.2.1 Smart Meter and Smart Grid |
|
|
11 | (1) |
|
1.8.2.2 Manage disaster and Outages |
|
|
11 | (1) |
|
|
11 | (1) |
|
1.8.3 Oil and Gas Industries |
|
|
11 | (1) |
|
1.8.3.1 Manage Exponential Growth |
|
|
11 | (1) |
|
1.8.3.2 3D Seismic Imaging and Kirchhoff |
|
|
12 | (1) |
|
1.8.3.3 Rapidly Process and Display Seismic Data |
|
|
12 | (1) |
|
1.8.4 E-Commerce and Hi-Tech Industries |
|
|
12 | (1) |
|
1.8.4.1 Association and Complementary Products |
|
|
12 | (1) |
|
1.8.4.2 Cross-Channel Analytics |
|
|
12 | (1) |
|
|
13 | (1) |
|
|
13 | (1) |
|
|
14 | (1) |
|
Chapter 2 Overview of Python for Machine Learning |
|
|
15 | (88) |
|
|
15 | (1) |
|
2.1.1 The Flow of Program Execution in Python |
|
|
15 | (1) |
|
2.2 Python for Machine Learning |
|
|
15 | (1) |
|
2.2.1 Why Is Python Good for ML? |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
16 | (1) |
|
|
17 | (1) |
|
|
17 | (1) |
|
|
17 | (58) |
|
|
18 | (1) |
|
2.4.1.1 Arithmetic Operators |
|
|
18 | (1) |
|
2.4.1.2 Comparison Operators |
|
|
18 | (1) |
|
2.4.1.3 Assignment Operators |
|
|
18 | (1) |
|
2.4.1.4 Logical Operators |
|
|
18 | (1) |
|
2.4.1.5 Membership Operators |
|
|
19 | (1) |
|
2.4.2 Python Code Samples on Basic Operators |
|
|
19 | (1) |
|
2.4.2.1 Arithmetic Operators |
|
|
19 | (2) |
|
2.4.2.2 Comparison Operators |
|
|
21 | (1) |
|
2.4.2.3 Logical Operators |
|
|
22 | (1) |
|
2.4.2.4 Membership Operators |
|
|
23 | (1) |
|
|
24 | (1) |
|
2.4.3.1 If & elif Statement |
|
|
24 | (1) |
|
|
25 | (1) |
|
2.4.3.3 Loop Control Statements |
|
|
26 | (1) |
|
2.4.4 Python Code Samples on Flow Control Statements |
|
|
26 | (1) |
|
2.4.4.1 Conditional Statements |
|
|
26 | (1) |
|
2.4.4.2 Python if... else Statement |
|
|
27 | (1) |
|
2.4.4.3 Python if... elif... else Statement |
|
|
28 | (1) |
|
|
29 | (1) |
|
2.4.4.5 The range() Function |
|
|
29 | (2) |
|
2.4.4.6 For Loop with else |
|
|
31 | (1) |
|
|
31 | (1) |
|
2.4.4.8 While Loop with else |
|
|
32 | (1) |
|
2.4.4.9 Python Break and Continue |
|
|
32 | (1) |
|
2.4.4.10 Python Break Statement |
|
|
32 | (1) |
|
2.4.4.11 Python Continue Statement |
|
|
33 | (1) |
|
2.4.5 Review of Basic Data Structures and Implementation in Python |
|
|
34 | (1) |
|
2.4.5.1 Array Data Structure |
|
|
34 | (1) |
|
2.4.5.2 Implementation of Arrays in Python |
|
|
35 | (1) |
|
|
36 | (1) |
|
2.4.5.4 Implementation of Linked List in Python |
|
|
36 | (2) |
|
2.4.5.5 Stacks and Queues |
|
|
38 | (2) |
|
|
40 | (1) |
|
2.4.5.7 Implementation of Queue in Python |
|
|
41 | (1) |
|
|
42 | (2) |
|
2.4.5.9 Implementation of Searching in Python |
|
|
44 | (2) |
|
|
46 | (1) |
|
2.4.5.11 Implementation of Bubble Sort in Python |
|
|
47 | (1) |
|
|
47 | (2) |
|
2.4.5.13 Implementation of Insertion Sort in Python |
|
|
49 | (2) |
|
|
51 | (1) |
|
2.4.5.15 Implementation of Selection Sort in Python |
|
|
52 | (1) |
|
|
52 | (1) |
|
2.4.5.17 Implementation of Merge Sort in Python |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
2.4.5.20 Data Structures in Python with Sample Codes |
|
|
55 | (3) |
|
2.4.5.21 Python Code Samples for Data Structures in Python |
|
|
58 | (10) |
|
2.4.6 Functions in Python |
|
|
68 | (1) |
|
2.4.6.1 Python Code Samples for Functions |
|
|
68 | (1) |
|
2.4.6.2 Returning Values from Functions |
|
|
68 | (1) |
|
2.4.6.3 Scope of Variables |
|
|
69 | (1) |
|
2.4.6.4 Function Arguments |
|
|
70 | (4) |
|
|
74 | (1) |
|
|
74 | (1) |
|
2.4.9 Debugging in Python |
|
|
75 | (1) |
|
|
75 | (1) |
|
|
75 | (17) |
|
2.5.1 Introduction to Numpy |
|
|
76 | (1) |
|
|
76 | (1) |
|
|
77 | (1) |
|
2.5.2 Numerical Operations |
|
|
77 | (1) |
|
2.5.3 Python Code Samples for Numpy Package |
|
|
78 | (1) |
|
|
78 | (4) |
|
2.5.3.2 Class and Attributes of ndarray---.ndim |
|
|
82 | (1) |
|
2.5.3.3 Class and Attributes of ndarray---.shape |
|
|
82 | (1) |
|
2.5.3.4 Class and Attributes of ndarray---ndarray.size, ndarray.Itemsize, ndarray.resize |
|
|
83 | (1) |
|
2.5.3.5 Class and Attributes of ndarray---.dtype |
|
|
83 | (1) |
|
|
84 | (1) |
|
2.5.3.7 Accessing Array Elements: Indexing |
|
|
85 | (3) |
|
2.5.3.8 Shape Manipulation |
|
|
88 | (2) |
|
2.5.3.9 Universal Functions (ufunc) in Numpy |
|
|
90 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
|
92 | (2) |
|
2.6.1 Creating Graphs with Matplotlib |
|
|
93 | (1) |
|
|
94 | (3) |
|
2.7.1 Getting Started with Pandas |
|
|
94 | (1) |
|
|
95 | (1) |
|
2.7.3 Key Operations on Data Frames |
|
|
95 | (1) |
|
2.7.3.1 Data Frame from List |
|
|
95 | (1) |
|
2.7.3.2 Rows and Columns in Data Frame |
|
|
96 | (1) |
|
2.8 Computational Complexity |
|
|
97 | (1) |
|
|
97 | (6) |
|
2.9.1 Implementation using Pandas |
|
|
98 | (1) |
|
2.9.2 Implementation using Numpy |
|
|
98 | (1) |
|
2.9.3 Implementation using Matplotlib |
|
|
98 | (1) |
|
|
99 | (1) |
|
|
100 | (1) |
|
|
101 | (2) |
|
Chapter 3 Data Analytics Life Cycle for Machine Learning |
|
|
103 | (42) |
|
|
103 | (1) |
|
3.2 Data Analytics Life Cycle |
|
|
104 | (41) |
|
3.2.1 Phase 1 -- Data Discovery |
|
|
104 | (3) |
|
3.2.2 Phase 2 -- Data Preparation and Exploratory Data Analysis |
|
|
107 | (3) |
|
3.2.2.1 Exploratory Data Analysis |
|
|
110 | (26) |
|
3.2.3 Phase 3 -- Model Planning |
|
|
136 | (3) |
|
3.2.4 Phase 4 -- Model Building |
|
|
139 | (1) |
|
3.2.5 Phase 5 -- Communicating Results |
|
|
140 | (1) |
|
3.2.6 Phase 6 -- Optimize and Operationalize the Models |
|
|
140 | (2) |
|
|
142 | (1) |
|
|
143 | (2) |
|
Chapter 4 Unsupervised Learning |
|
|
145 | (32) |
|
|
145 | (1) |
|
4.2 Unsupervised Learning |
|
|
145 | (2) |
|
|
147 | (1) |
|
4.3 Evaluation Metrics for Clustering |
|
|
147 | (3) |
|
|
148 | (1) |
|
|
149 | (1) |
|
4.3.2 Similarity Measures |
|
|
149 | (1) |
|
4.4 Clustering Algorithms |
|
|
150 | (1) |
|
4.4.1 Hierarchical and Partitional Clustering Approaches |
|
|
150 | (1) |
|
4.4.2 Agglomerative and Divisive Clustering Approaches |
|
|
150 | (1) |
|
4.4.3 Hard and Fuzzy Clustering Approaches |
|
|
150 | (1) |
|
4.4.4 Monothetic and Polythetic Clustering Approaches |
|
|
151 | (1) |
|
4.4.5 Deterministic and Probabilistic Clustering Approaches |
|
|
151 | (1) |
|
|
151 | (8) |
|
4.5.1 Geometric Intuition, Centroids |
|
|
151 | (1) |
|
|
152 | (1) |
|
|
152 | (1) |
|
4.5.4 Space and Time Complexity |
|
|
153 | (1) |
|
4.5.5 Advantages and Disadvantages of k-Means Clustering |
|
|
153 | (1) |
|
|
153 | (1) |
|
|
153 | (1) |
|
4.5.6 k-Means Clustering in Practice Using Python |
|
|
154 | (1) |
|
4.5.6.1 Illustration of the k-Means Algorithm Using Python |
|
|
154 | (3) |
|
4.5.7 Fuzzy k-Means Clustering Algorithm |
|
|
157 | (1) |
|
|
158 | (1) |
|
4.5.8 Advantages and Disadvantages of Fuzzy k-Means Clustering |
|
|
158 | (1) |
|
4.6 Hierarchical Clustering |
|
|
159 | (6) |
|
4.6.1 Agglomerative Hierarchical Clustering |
|
|
159 | (2) |
|
4.6.2 Divisive Hierarchical Clustering |
|
|
161 | (1) |
|
4.6.3 Techniques to Merge Cluster |
|
|
161 | (2) |
|
4.6.4 Space and Time Complexity |
|
|
163 | (1) |
|
4.6.5 Limitations of Hierarchical Clustering |
|
|
163 | (1) |
|
4.6.6 Hierarchical Clustering in Practice Using Python |
|
|
163 | (1) |
|
|
164 | (1) |
|
4.7 Mixture of Gaussian Clustering |
|
|
165 | (4) |
|
4.7.1 Expectation Maximization |
|
|
166 | (2) |
|
4.7.2 Mixture of Gaussian Clustering in Practice Using Python |
|
|
168 | (1) |
|
4.8 Density-Based Clustering Algorithm |
|
|
169 | (8) |
|
4.8.1 DBSCAN (Density-Based Spatial Clustering of Applications with Noise) |
|
|
169 | (2) |
|
4.8.2 Space and Time Complexity |
|
|
171 | (1) |
|
4.8.3 Advantages and Disadvantages of DBSCAN |
|
|
171 | (1) |
|
|
171 | (1) |
|
|
171 | (1) |
|
4.8.4 DBSCAN in Practice Using Python |
|
|
172 | (2) |
|
|
174 | (1) |
|
|
174 | (3) |
|
Chapter 5 Supervised Learning: Regression |
|
|
177 | (42) |
|
|
177 | (1) |
|
5.2 Supervised Learning -- Real-Life Scenario |
|
|
177 | (1) |
|
5.3 Types of Supervised Learning |
|
|
178 | (3) |
|
5.3.1 Supervised Learning -- Classification |
|
|
178 | (1) |
|
5.3.1.1 Classification -- Predictive Modeling |
|
|
179 | (1) |
|
5.3.2 Supervised Learning -- Regression |
|
|
179 | (1) |
|
5.3.2.1 Regression Predictive Modeling |
|
|
180 | (1) |
|
5.3.3 Classification vs. Regression |
|
|
180 | (1) |
|
5.3.4 Conversion between Classification and Regression Problems |
|
|
181 | (1) |
|
|
181 | (38) |
|
5.4.1 Types of Linear Regression |
|
|
182 | (1) |
|
5.4.1.1 Simple Linear Regression |
|
|
183 | (1) |
|
5.4.1.2 Multiple Linear Regression |
|
|
184 | (2) |
|
5.4.2 Geometric Intuition |
|
|
186 | (1) |
|
5.4.3 Mathematical Formulation |
|
|
187 | (14) |
|
5.4.4 Solving Optimization Problem |
|
|
201 | (1) |
|
5.4.4.1 Maxima and Minima |
|
|
201 | (1) |
|
|
202 | (3) |
|
5.4.4.3 LMS (Least Mean Square) Update Rule |
|
|
205 | (1) |
|
|
205 | (1) |
|
5.4.5 Real-World Applications |
|
|
206 | (1) |
|
5.4.5.1 Predictive Analysis |
|
|
206 | (2) |
|
5.4.5.2 Medical Outcome Prediction |
|
|
208 | (1) |
|
5.4.5.3 Wind Speed Prediction |
|
|
208 | (1) |
|
5.4.5.4 Environmental Effects Monitoring |
|
|
209 | (1) |
|
5.4.6 Linear Regression in Practice Using Python |
|
|
209 | (1) |
|
5.4.6.1 Simple Linear Regression Using Python |
|
|
209 | (3) |
|
5.4.6.2 Multiple Linear Regression Using Python |
|
|
212 | (3) |
|
|
215 | (1) |
|
|
215 | (4) |
|
Chapter 6 Supervised Learning: Classification |
|
|
219 | (132) |
|
|
219 | (1) |
|
6.2 Use Cases of Classification |
|
|
219 | (1) |
|
|
219 | (17) |
|
6.3.1 Geometric Intuition |
|
|
220 | (2) |
|
6.3.2 Variants of Logistic Regression |
|
|
222 | (1) |
|
6.3.2.1 Simple Logistic Regression |
|
|
222 | (1) |
|
6.3.2.2 Multiple Logistic Regression |
|
|
223 | (1) |
|
6.3.2.3 Binary Logistic Regression |
|
|
223 | (1) |
|
6.3.2.4 Multiclass Logistic Regression |
|
|
224 | (1) |
|
6.3.2.5 Nominal Logistic Regression |
|
|
224 | (2) |
|
6.3.2.6 Ordinal Logistic Regression |
|
|
226 | (1) |
|
6.3.3 Optimization Problem |
|
|
226 | (1) |
|
|
226 | (1) |
|
6.3.5 Real-World Applications |
|
|
227 | (1) |
|
6.3.5.1 Medical Diagnosis |
|
|
227 | (1) |
|
6.3.5.2 Text Classification |
|
|
227 | (1) |
|
|
227 | (1) |
|
6.3.6 Logistic Regression in Practice using Python |
|
|
228 | (3) |
|
6.3.6.1 Variable Descriptions |
|
|
231 | (1) |
|
6.3.6.2 Checking for Missing Values |
|
|
231 | (3) |
|
6.3.6.3 Converting Categorical Variables to a Dummy Indicator |
|
|
234 | (2) |
|
6.4 Decision Tree Classifier |
|
|
236 | (43) |
|
6.4.1 Important Terminology in the Decision Tree |
|
|
236 | (1) |
|
6.4.2 Example for Decision Tree |
|
|
237 | (1) |
|
6.4.3 Sample Decision Tree |
|
|
238 | (1) |
|
6.4.4 Decision Tree Formation |
|
|
238 | (2) |
|
6.4.5 Algorithms Used for Decision Trees |
|
|
240 | (1) |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
241 | (1) |
|
6.4.6 Overfitting and Underfitting |
|
|
241 | (1) |
|
|
241 | (1) |
|
|
242 | (1) |
|
6.4.6.3 Pruning to Avoid Overfitting |
|
|
243 | (1) |
|
6.4.7 Advantages and Disadvantages |
|
|
244 | (1) |
|
|
244 | (1) |
|
|
244 | (1) |
|
6.4.8 Decision Tree Examples |
|
|
245 | (17) |
|
6.4.9 Regression Using Decision Tree |
|
|
262 | (4) |
|
6.4.10 Real-World Examples |
|
|
266 | (1) |
|
6.4.10.1 Predicting Library Book |
|
|
266 | (1) |
|
6.4.10.2 Identification of Tumor |
|
|
267 | (2) |
|
6.4.10.3 Classification of Telescope Image |
|
|
269 | (1) |
|
6.4.10.4 Business Management |
|
|
269 | (2) |
|
|
271 | (1) |
|
6.4.10.6 Healthcare Management |
|
|
271 | (1) |
|
6.4.10.7 Decision Tree in Data Mining |
|
|
271 | (2) |
|
6.4.11 Decision Trees in Practice Using Python |
|
|
273 | (6) |
|
6.5 Random Forest Classifier |
|
|
279 | (27) |
|
6.5.1 Random Forest and Their Construction |
|
|
280 | (1) |
|
6.5.2 Sampling of the Dataset in Random Forest |
|
|
281 | (4) |
|
6.5.2.1 Creation of Subset Data |
|
|
285 | (1) |
|
6.5.3 Pseudocode for Random Forest |
|
|
286 | (1) |
|
6.5.3.1 Pseudocode for Prediction in Random Forest |
|
|
287 | (1) |
|
6.5.4 Regression Using Random Forest |
|
|
287 | (1) |
|
6.5.5 Classification Using Random Forest |
|
|
288 | (5) |
|
6.5.5.1 Random Forest Problem for Classification - Examples |
|
|
293 | (2) |
|
6.5.6 Features and Properties of Random Forest |
|
|
295 | (1) |
|
|
295 | (1) |
|
|
296 | (1) |
|
6.5.7 Advantages and Disadvantages of Random Forest |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
296 | (1) |
|
6.5.8 Calculation of Error Using Bias and Variance |
|
|
296 | (1) |
|
|
296 | (1) |
|
|
296 | (1) |
|
6.5.8.3 Properties of Bias and Variance |
|
|
297 | (1) |
|
|
297 | (1) |
|
6.5.10 Extremely Randomized Tree |
|
|
297 | (1) |
|
6.5.11 Real-World Examples |
|
|
298 | (1) |
|
6.5.11.1 Machine Fault Diagnosis |
|
|
298 | (1) |
|
|
298 | (1) |
|
|
299 | (1) |
|
|
300 | (1) |
|
|
300 | (1) |
|
6.5.12 Random Forest in Practice Using Python |
|
|
300 | (6) |
|
6.6 Support Vector Machines |
|
|
306 | (41) |
|
6.6.1 Geometric Intuition |
|
|
307 | (3) |
|
6.6.2 Mathematical Formulation |
|
|
310 | (2) |
|
6.6.2.1 Maximize Margin with Noise |
|
|
312 | (1) |
|
6.6.2.2 Slack Variable ξi |
|
|
312 | (3) |
|
|
315 | (2) |
|
|
317 | (3) |
|
|
320 | (1) |
|
|
320 | (2) |
|
|
322 | (1) |
|
6.6.6.2 Radial Basis Function (RBF) Kernel |
|
|
322 | (1) |
|
6.6.6.3 Other Domain-Specific Kernel |
|
|
323 | (1) |
|
|
323 | (1) |
|
6.6.6.5 Exponential Kernel |
|
|
323 | (1) |
|
|
323 | (1) |
|
6.6.6.7 Rational Quadratic Kernel |
|
|
323 | (1) |
|
6.6.6.8 Multiquadratic Kernel |
|
|
323 | (1) |
|
6.6.6.9 Inverse Multiquadratic Kernel |
|
|
323 | (1) |
|
|
324 | (1) |
|
|
324 | (1) |
|
6.6.6.12 Chi-Square Kernel |
|
|
324 | (1) |
|
6.6.6.13 Histogram Intersection Kernel |
|
|
324 | (1) |
|
6.6.6.14 Generalized Histogram Intersection Kernel |
|
|
324 | (1) |
|
|
324 | (1) |
|
|
325 | (1) |
|
|
326 | (1) |
|
|
326 | (1) |
|
|
326 | (1) |
|
|
327 | (1) |
|
6.6.10.3 Directed Acyclic Graph SVM |
|
|
327 | (1) |
|
|
328 | (13) |
|
6.6.12 Real-World Applications |
|
|
341 | (1) |
|
6.6.12.1 Classification of Cognitive Impairment |
|
|
341 | (1) |
|
|
342 | (1) |
|
6.6.12.3 Feature Extraction |
|
|
342 | (1) |
|
6.6.12.4 SVM Classification |
|
|
342 | (1) |
|
|
342 | (1) |
|
6.6.12.6 Performance Analysis |
|
|
343 | (1) |
|
6.6.12.7 Text Categorization |
|
|
343 | (1) |
|
6.6.12.8 Handwritten Optical Character Recognition |
|
|
344 | (1) |
|
6.6.12.9 Natural Language Processing |
|
|
344 | (1) |
|
6.6.12.10 Cancer Prediction |
|
|
345 | (1) |
|
6.6.12.11 Stock Market Forecasting |
|
|
345 | (1) |
|
6.6.12.12 Protein Structure Prediction |
|
|
346 | (1) |
|
6.6.12.13 Face Detection Using SVM |
|
|
346 | (1) |
|
6.6.13 Advantages and Disadvantages of SVM |
|
|
347 | (1) |
|
6.7 SVM Classification in Practice Using Python |
|
|
347 | (4) |
|
|
347 | (1) |
|
6.7.2 What Is a Hyperplane? |
|
|
348 | (1) |
|
|
349 | (1) |
|
|
349 | (2) |
|
Chapter 7 Feature Engineering |
|
|
351 | (22) |
|
|
351 | (1) |
|
|
352 | (3) |
|
|
353 | (1) |
|
7.2.1.1 Forward Selection |
|
|
353 | (1) |
|
7.2.1.2 Backward Elimination |
|
|
353 | (1) |
|
7.2.1.3 Exhaustive Feature Selection |
|
|
354 | (1) |
|
|
354 | (1) |
|
|
355 | (2) |
|
7.3.1 Types of Factor Analysis |
|
|
355 | (1) |
|
7.3.2 Working of Factor Analysis |
|
|
355 | (1) |
|
|
356 | (1) |
|
7.3.3.1 Definition of Factor |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
|
356 | (1) |
|
7.3.3.6 Selecting the Number of Factors |
|
|
356 | (1) |
|
7.4 Principal Component Analysis |
|
|
357 | (2) |
|
|
357 | (1) |
|
|
357 | (1) |
|
7.4.3 Estimate the Eigen decomposition |
|
|
357 | (1) |
|
|
357 | (2) |
|
|
359 | (2) |
|
7.5.1 Usage of eigendecomposition in PCA |
|
|
359 | (2) |
|
|
361 | (1) |
|
7.6.1 Factor Analysis Vs. Principal Component Analysis |
|
|
362 | (1) |
|
7.7 PCA Transformation in Practice Using Python |
|
|
362 | (2) |
|
7.8 Linear Discriminant Analysis |
|
|
364 | (4) |
|
7.8.1 Mathematical Operations in LDA |
|
|
365 | (3) |
|
7.9 LDA Transformation in Practice Using Python |
|
|
368 | (5) |
|
7.9.1 Implementation of Scatter within the Class (Sw) |
|
|
368 | (1) |
|
7.9.2 Implementation of Scatter between Class (Sb) |
|
|
369 | (2) |
|
|
371 | (1) |
|
|
371 | (2) |
|
Chapter 8 Reinforcement Engineering |
|
|
373 | (16) |
|
|
373 | (1) |
|
8.2 Reinforcement Learning |
|
|
373 | (3) |
|
8.2.1 Examples of Reinforcement Learning |
|
|
375 | (1) |
|
8.3 How RL Differs from Other ML Algorithms? |
|
|
376 | (1) |
|
8.3.1 Supervised Learning |
|
|
376 | (1) |
|
8.4 Elements of Reinforcement Learning |
|
|
376 | (3) |
|
|
376 | (1) |
|
|
377 | (1) |
|
|
377 | (1) |
|
8.4.3.1 Examples of Rewards |
|
|
377 | (1) |
|
8.4.4 Model of the Environment |
|
|
378 | (1) |
|
8.4.5 The Reinforcement Learning Algorithm |
|
|
378 | (1) |
|
8.4.6 Methods to Implement Reinforcement Learning in ML |
|
|
379 | (1) |
|
8.5 Markov Decision Process |
|
|
379 | (2) |
|
|
379 | (1) |
|
|
380 | (1) |
|
|
381 | (8) |
|
|
382 | (1) |
|
|
383 | (2) |
|
|
385 | (1) |
|
8.6.4 Efficiency of Dynamic Programming |
|
|
385 | (1) |
|
8.6.5 Dynamic Programming in Practice using Python |
|
|
386 | (1) |
|
|
387 | (1) |
|
|
387 | (2) |
|
Chapter 9 Case Studies for Decision Sciences Using Python |
|
|
389 | (54) |
|
9.1 Use Case 1 -- Retail Price Optimization Using Price Elasticity of Demand Method |
|
|
389 | (12) |
|
|
389 | (1) |
|
9.1.2 Understanding the Data |
|
|
390 | (10) |
|
|
400 | (1) |
|
9.2 Use Case 2 -- Market Basket Analysis (MBA) |
|
|
401 | (11) |
|
|
401 | (1) |
|
9.2.2 Understating the Data |
|
|
401 | (11) |
|
|
412 | (1) |
|
9.3 Use Case 3 -- Sales Prediction of a Retailer |
|
|
412 | (7) |
|
|
412 | (1) |
|
9.3.2 Understanding the Data |
|
|
413 | (5) |
|
|
418 | (1) |
|
9.4 Use Case 4 -- Predicting the Cost of Insurance Claims for a Property and Causalty (P&C) Insurance Company |
|
|
419 | (11) |
|
|
419 | (1) |
|
9.4.2 Understanding the Data |
|
|
419 | (11) |
|
9.5 Use Case 5 -- E-Commerce Product Ranking and Sentiment Analysis |
|
|
430 | (13) |
|
|
430 | (1) |
|
9.5.2 Understanding the Data |
|
|
431 | (10) |
|
|
441 | (1) |
|
|
442 | (1) |
Appendix: Python Cheat Sheet for Machine Learning |
|
443 | (6) |
Bibliography |
|
449 | (4) |
Index |
|
453 | |