Atjaunināt sīkdatņu piekrišanu

E-grāmata: Machine Learning and Intelligent Communication: 8th EAI International Conference, MLICOM 2023, Beijing, China, December 17, 2023, Proceedings

Edited by , Edited by
  • Formāts - PDF+DRM
  • Cena: 130,85 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed post-conference proceedings of the 8th EAI International Conference on Machine Learning and Intelligent Communication, MLICOM 2023, which was held in Beijing, China, during December 17, 2023.





The 18 full papers were carefully reviewed and selected from 44 submissions. They were categorized under the topical sections as follows: Machine Learning and Information Processing, Intelligent Communications Technology, Emerging Artificial Intelligence Application.   

Recenzijas

Machine Learning and Intelligent Communications provides a deep dive into the latest advancements in AI and its applications in communication technologies. it offers valuable insights for researchers and professionals looking to explore AIs role in improving communication systems. Expanding the focus to include emerging trends and industry applications would enhance its appeal and utility, making it a more well-rounded resource for the field. (Nithin Reddy Desani, New York Weekly, nyweekly.com, October 3, 2024)

Machine Learning and Information Processing.- Learning Consistent
Embedding Distribution for Robust ASR.- Automatic Modulation Classification
with Multi domain Feature Fusion.- Research on Garbage Classification
Algorithm Based on Machine Learning.- PCB Large Color Variation Image
Registration with Local Optimization LoFTR.- SAR Image Compression Based on
Low frequency Suppression and Target Perception.- Intelligent Communications
Technology.- Self guided Few shot Semantic Segmentation for Remote Sensing
Imagery Based on Large Vision Models.-  Generating a personalised sensor data
generation system for the fusion of adversarial networks and behavioural
matter of fact mapping.- Class Specific Noise Injection for Improved Road
Segmentation.- SAR Moving Target Segmentation and Removal Based on Deep
Learning.-  Event Sequence driven Generalized and Accurate End to end
Streaming Latency Measurement.- GPT4D Automatic Cross Version Linux Driver
Upgrade Toolkit.- Local to global Point Supervised Object Detector via
Aggregation of Discriminative Parts.- Emerging Artificial Intelligence
Application.- Leveraging Large Language Model to Generate Multi modal
Timeline Summarization.- CancersQA Federated Learning with Pre trained Models
for Intelligent Medical Diagnosis.- Measuring Contour Similarity Based on
improved Hausdoff distance for the Automatic Conjugation of Irregular
Fragments of Ancient Manuscripts.- Research on Fund News Classification
Method Based on Multi level Model Fusion.- A Study on the readability of
Chinese text from a rhetorical perspective.- Application of Convolutional
Neural Networks in Detecting Cropping Intensity An Attempt based on Global
Typical Samples.