Atjaunināt sīkdatņu piekrišanu

E-grāmata: Machine Learning and Knowledge Extraction: 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, Vienna, Austria, August 23-26, 2022, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13480
  • Izdošanas datums: 10-Aug-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031144639
  • Formāts - EPUB+DRM
  • Cena: 94,58 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 13480
  • Izdošanas datums: 10-Aug-2022
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031144639

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 6th IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2022, held in Vienna, Austria during August 2022.

The 23 full papers presented were carefully reviewed and selected from 45 submissions. The papers are covering a wide range from integrative machine learning approach, considering the importance of data science and visualization for the algorithmic pipeline with a strong emphasis on privacy, data protection, safety and security.

Explain to Not Forget: Defending Catastrophic Forgetting with XAI.-
Approximation of SHAP values for Randomized Tree Ensembles.- Color shadows
(part I): exploratory usability evaluation of activation maps in radiological
machine learning.- Effects of Fairness and Explanation on Trust in Ethical
AI.- Towards Refined Classifications driven by SHAP explanations.- Global
Intepretable Calibration Index, a New Metric to Estimate Machine Learning
Models' Calibration.- The ROC Diagonal is not Laypersons Chance: a New
Baseline Shows the Useful Area.- Debiasing MDI Feature Importance and SHAP
values in Tree Ensembles.- The Influence of User Diversity on Motives and
Barriers when Using Health Apps - A Conjoint Investigation of the
Intention-Behavior Gap.- Identifying Fraud Rings Using Domain Aware Weighted
Community Detection.- Capabilities, limitations and challenges of style
transfer with CycleGANs: a study on automatic ring design generation.-
Semantic Causal Abstraction for Event Prediction.- An Evaluation Study of
Intrinsic Motivation Techniques applied to Reinforcement Learning over Hard
Exploration Environments.- Towards Generating Financial Reports From Tabular
Data Using Transformers.- Evaluating the performance of SOBEK text mining
keyword extraction algorithm.- Classification of Screenshot Image Captured in
Online Meeting System.- A survey on the application of virtual reality in
event-related potential research.- Visualizing Large Collections of URLs
Using the Hilbert Curve.- How to Reduce the Time Necessary for Evaluation of
Tree-based Models.- An Empirical Analysis of and Guidelines for
Synthetic-Data-based Anomaly Detection.- SECI Model in Data-Based Procedure
for the Assessment of the Frailty State in Diabetic Patients.- Comparing
machine learning correlations to domain experts causal knowledge: Employee
turnover use case.- Machine learning and knowledge extraction to support work
safety for smart forest operations.