Atjaunināt sīkdatņu piekrišanu

E-grāmata: Machine Learning and Knowledge Extraction: Third IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2019, Canterbury, UK, August 26-29, 2019, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 11713
  • Izdošanas datums: 22-Aug-2019
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030297268
  • Formāts - EPUB+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Lecture Notes in Computer Science 11713
  • Izdošanas datums: 22-Aug-2019
  • Izdevniecība: Springer Nature Switzerland AG
  • Valoda: eng
  • ISBN-13: 9783030297268

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the IFIP TC 5, TC 12, WG 8.4, 8.9, 12.9 International Cross-Domain Conference for Machine Learning and Knowledge Extraction, CD-MAKE 2019, held in Canterbury, UK, in August 2019.

The 25 revised full papers presented were carefully reviewed and selected from 45 submissions. The cross-domain integration and appraisal of different fields provides an atmosphere to foster different perspectives and opinions; it will offer a platform for novel ideas and a fresh look on the methodologies to put these ideas into business for the benefit of humanity.

KANDINSKY Patterns as IQ-Test for machine learning.- Machine Learning Explainability Through Comprehensible Decision Trees.- New Frontiers in Explainable AI: Understanding the GI to Interpret the GO.- Automated Machine Learning for Studying the Trade-off Between Predictive Accuracy and Interpretability.- Estimating the Driver Status Using Long Short Term Memory.- Using Relational Concept Networks for Explainable Decision Support.- Physiological Indicators for User Trust in Machine Learning with Influence Enhanced Fact-Checking.- Detection of Diabetic Retinopathy and Maculopathy in Eye Fundus Images Using Deep Learning and Image Augmentation.- Semi-automated Quality Assurance for Domain-expert-driven Data Exploration - An Application to Principal Component Analysis.- Ranked MSD: A New Feature Ranking and Feature Selection Approach for Biomarker Identification.- How to improve the adaptation phase of the CBR in the medical domain.- Machine Learning for Family Doctors: A Case of Cluster Analysis for studying Aging Associated Comorbidities and Frailty.- Knowledge Extraction for Cryptographic Algorithm Validation Test Vectors by Means of Combinatorial Coverage Measurement.- An Evaluation on Robustness and Utility of Fingerprinting Schemes.- Differentially Private Obfuscation of Facial Images.- Insights into Learning Competence through Probabilistic Graphical Models.- Sparse Nerves in Practice.- Backdoor Attacks in Neural Networks - a Systematic Evaluation on Multiple Traffic Sign Datasets.- Deep Learning for Proteomics Data for Feature Selection and Classification.- Package and Classify Wireless Product Features to Their Sales Items and Categories Automatically.- Temporal diagnosis of discrete-event systems with dual knowledge Compilation.- A Case for Guided Machine Learning.- Using Ontologies to Express Prior Knowledge for Genetic Programming.- Real Time Hand Movement Trajectory Tracking for Enhancing Dementia Screening in Ageing Deaf Signers of British Sign Language.- Commonsense Reasoning using Theorem Proving and Machine Learning.- Deep structured semantic model for recommendations with heterogeneous side information in e-commerce.