Atjaunināt sīkdatņu piekrišanu

Machine Learning for Medical Applications: Computational Drug Discovery, Bioimaging, Smart Biomaterials [Hardback]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 550 pages, height x width: 240x170 mm, 162 Illustrations, color; 59 Illustrations, black and white
  • Sērija : Advanced Mechanical Engineering
  • Izdošanas datums: 01-Sep-2025
  • Izdevniecība: De Gruyter
  • ISBN-10: 3111503186
  • ISBN-13: 9783111503189
  • Hardback
  • Cena: 181,15 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 550 pages, height x width: 240x170 mm, 162 Illustrations, color; 59 Illustrations, black and white
  • Sērija : Advanced Mechanical Engineering
  • Izdošanas datums: 01-Sep-2025
  • Izdevniecība: De Gruyter
  • ISBN-10: 3111503186
  • ISBN-13: 9783111503189

Machine Learning for Medical Applications – Volume I provides an in-depth look into the frontier of artificial intelligence in healthcare, bringing together contributions from leading researchers and innovators. This volume focuses on three critical areas: computational drug discovery, advanced bioimaging techniques, and the development of smart biomaterials for medical use. Readers will discover how machine learning is revolutionizing personalized medicine, improving diagnostic accuracy, and enabling the design of AI-driven biomedical sensors and therapeutic systems. With practical insights into algorithmic modeling, drug toxicity prediction, and materials screening, this book bridges the gap between data science and clinical applications. Ideal for professionals, academics, and students in biomedical engineering, computer science, and medical informatics, this book highlights the synergistic potential of machine learning and modern medicine in shaping the future of healthcare.

R. Ranjith, Amit Sharma, R. Dhivya, India; J. Paulo Davim, Portugal.