Atjaunināt sīkdatņu piekrišanu

Machine Learning for Medical Applications: Computer Vision, Image Processing, Disease Detection [Hardback]

Edited by , Edited by , Edited by , Edited by
  • Formāts: Hardback, 542 pages, height x width: 240x170 mm, 136 Illustrations, black and white
  • Sērija : Advanced Mechanical Engineering
  • Izdošanas datums: 01-Sep-2025
  • Izdevniecība: De Gruyter
  • ISBN-10: 3119147826
  • ISBN-13: 9783119147828
  • Hardback
  • Cena: 4,82 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 542 pages, height x width: 240x170 mm, 136 Illustrations, black and white
  • Sērija : Advanced Mechanical Engineering
  • Izdošanas datums: 01-Sep-2025
  • Izdevniecība: De Gruyter
  • ISBN-10: 3119147826
  • ISBN-13: 9783119147828

Machine Learning for Medical Applications – Volume II delves into the intersection of artificial intelligence, computer vision, and healthcare, offering a comprehensive exploration of how machine learning is revolutionizing disease detection and diagnostics. With a focus on deep learning methods, the volume covers a wide spectrum of innovations including medical image segmentation, predictive modeling, tissue engineering, smart biomaterials, and personalized implant design through 3D printing. Contributors from academia and industry present state-of-the-art applications involving quantum dot functionalization, AI-enhanced diagnostic materials, and real-time image analysis. Each chapter provides both foundational knowledge and practical insight into how advanced algorithms can drive medical breakthroughs. Ideal for medical technologists, data scientists, biomedical engineers, and clinical practitioners, this volume emphasizes the role of machine learning in developing faster, smarter, and more accurate diagnostic tools for the next generation of personalized medicine.

R. Ranjith, Amit Sharma, R. Dhivya, India; J. Paulo Davim, Portugal.