Atjaunināt sīkdatņu piekrišanu

E-grāmata: Machine Learning in Medical Imaging: 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 10541
  • Izdošanas datums: 06-Sep-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319673899
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 53,52 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Sērija : Lecture Notes in Computer Science 10541
  • Izdošanas datums: 06-Sep-2017
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783319673899
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book constitutes the refereed proceedings of the 8th International Workshop on Machine Learning in Medical Imaging, MLMI 2017, held in conjunction with MICCAI 2017, in Quebec City, QC, Canada, in September 2017.

The 44 full papers presented in this volume were carefully reviewed and selected from 63 submissions. The main aim of this workshop is to help advance scientific research within the broad field of machine learning in medical imaging. The workshop focuses on major trends and challenges in this area, and presents works aimed to identify new cutting-edge techniques and their use in medical imaging.

From Large to Small Organ Segmentation in CT Using Regional Context.-
Motion Corruption Detection in Breast DCE-MRI.- Detection and Localization of
Drosophila Egg Chambers in Microscopy Images.- Growing a Random Forest with
Fuzzy Spatial Features for Fully Automatic Artery-specific Coronary Calcium
Scoring.- Atlas of Classifiers for Brain MRI Segmentation.- Dictionary
Learning and Sparse Coding-based Denoising for High-Resolution Task
Functional Connectivity MRI Analysis.- Yet Another ADNI Machine Learning
Paper? Paving The Way Towards Fully-reproducible Research on Classification
of Alzheimers Disease.- Multi-Factorial Age Estimation from Skeletal and
Dental MRI Volumes.- Automatic Classification of Proximal Femur Fractures
Based on Attention Models.- Joint Supervoxel Classification Forest for
Weakly-Supervised Organ Segmentation.- Accurate and Consistent Hippocampus
Segmentation Through Convolutional LSTM and View Ensemble.- STAR:
Spatio-Temporal Architecture for Super-Resolution inLow-Dose CT Perfusion.-
Classification of Alzheimers Disease by Cascaded Convolutional Neural
Networks Using PET Images.- Finding Dense Supervoxel Correspondence of
Cone-Beam Computed Tomography Images.- Multi-Scale Volumetric ConvNet with
Nested Residual Connections for Segmentation of Anterior Cranial Base.-
Feature Learning and Fusion of Multimodality Neuroimaging and Genetic Data
for Multi-Status Dementia Diagnosis.- 3D Convolutional Neural Networks with
Graph Refinement for Airway Segmentation Using Incomplete Data Labels.-
Efficient Groupwise Registration for Brain MRI by Fast Initialization.-
Sparse Multi-View Task-centralized Learning for ASD Diagnosis.- Inter-Subject
Similarity Guided Brain Network Modelling for MCI Diagnosis.- Scalable and
Fault Tolerant Platform for Distributed Learning on Private Medical Data.-
Triple-Crossing 2.5D Convolutional Neural Network for Detecting Neuronal
Arbours in 3D Microscopic Images.- Longitudinally-Consistent Parcellation of
Infant Population Cortical Surfaces Based on Functional Connectivity.-
Gradient Boosted Trees for Corrective Learning.- Self-paced Convolutional
Neural Network for Computer Aided Detection in Medical Imaging Analysis.- A
Point Says a Lot: An Interactive Segmentation Method for MR Prostate via
One-Point Labeling.- Collage CNN for Renal Cell Carcinoma Detection from CT.-
Aggregating Deep Convolutional Features for Melanoma Recognition in
Dermoscopy Images.- Localizing Cardiac Structures in Fetal Heart Ultrasound
Video.- Deformable Registration Through Learning of Context-Specific Metric
Aggregation.- Segmentation of Craniomaxillofacial Bony Structures from MRI
with a 3D Deep-learning Based Cascade Framework.- 3D U-net with Multi-Level
Deep Supervision: Fully Automatic Segmentation of Proximal Femur in 3D MR
Images.- Indecisive Trees for Classification and Prediction of Knee
Osteoarthritis.- Whole Brain Segmentation and Labeling from CT using
synthetic MR Images.- Structural Connectivity Guided SparseEffective
Connectivity for MCI Identification.- Fusion of High-order and Low-order
Effective Connectivity Networks for MCI Classification.- Novel Effective
Connectivity Network Inference for MCI Identification.- Reconstruction of
Thin-Slice Medical Images Using Generative Adversarial Network.- Neural
Network Convolution (NNC) for Converting Ultra-Low-Dose to Virtual
High-Dose CT Images.- Deep-Fext: Deep Feature Extraction for Vessel
Segmentation and Centerline Prediction.- Product Space Decompositions for
Continuous Representations of Brain Connectivity.- Identifying Autism from
Resting-State fMRI Using Long Short-Term Memory Networks.- Machine Learning
for Large-Scale Quality Control of 3D Shape Models in Neuroimaging.- Tversky
Loss Function for Image Segmentation Using 3D Fully Convolutional Deep
Networks.