Atjaunināt sīkdatņu piekrišanu

E-grāmata: Machine Models of Music

Edited by , Edited by (Rice University)
  • Formāts: 556 pages
  • Sērija : Machine Models of Music
  • Izdošanas datums: 08-Jan-1993
  • Izdevniecība: MIT Press
  • Valoda: eng
  • ISBN-13: 9780262290982
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 160,29 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Machine Models of Music
  • Formāts: 556 pages
  • Sērija : Machine Models of Music
  • Izdošanas datums: 08-Jan-1993
  • Izdevniecība: MIT Press
  • Valoda: eng
  • ISBN-13: 9780262290982
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Machine Models of Music brings together representative models ranging from Mozart's "Musical Dice Game" to a classic article by Marvin Minsky and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music, and to demonstrate the ways in which music can push the boundaries of traditional AI research.
Major sections of the book take up pioneering research in generate-and-test composition (Lejaren Hiller, Frederick Brooks, Jr., Stanley Gill); composition parsing (Allen Forte, Herbert Simon, Terry Winograd); heuristic composition (John Rothgeb, James Moorer, Stephen Smoliar); generative grammars (Otto Laske, Gary Rader, Johan Sundberg, Fred Lerdahl); alternative theories (Marvin Minsky, James Meehan); composition tools (Charles Ames, Kemal Ebcioglu, David Cope, Christopher Fry); and new directions (David Levitt, Christopher Longuet-Higgins, Jamshed Bharucha, Stephan Schwanauer).

Machine Models of Music brings together representative models and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music and to demonstrate the ways in which music can push the boundaries of traditional Al research.

Machine Models of Music brings together representative models ranging from Mozart's "Musical Dice Game" to a classic article by Marvin Minsky and current research to illustrate the rich impact that artificial intelligence has had on the understanding and composition of traditional music and to demonstrate the ways in which music can push the boundaries of traditional Al research.Major sections of the book take up pioneering research in generate-and-test composition (Lejaren Hiller, Barry Brooks, Jr., Stanley Gill); composition parsing (Allen Forte, Herbert Simon, Terry Winograd); heuristic composition (John Rothgeb, James Moorer, Steven Smoliar); generative grammars (Otto Laske, Gary Rader, Johan Sundberg, Fred Lerdahl); alternative theories (Marvin Minsky, James Meehan); composition tools (Charles Ames, Kemal Ebcioglu, David Cope, C. Fry); and new directions (David Levitt, Christopher Longuet-Higgins, Jamshed Bharucha, Stephan Schwanauer).Stephan Schwanauer is President of Mediasoft Corporation. David Levitt is the founder of HIP Software and head of audio products at VPL Research.



Machine Models of Music brings together representative models and current research toillustrate the rich impact that artificial intelligence has had on the understanding and compositionof traditional music and to demonstrate the ways in which music can push the boundaries oftraditional Al research.