Machining Difficult-to-Cut Materials: Basic Principles and Challenges 1st ed. 2019 [Hardback]

  • Formāts: Hardback, 243 pages, height x width: 235x155 mm, weight: 553 g, 15 Illustrations, color; 80 Illustrations, black and white; XII, 243 p. 95 illus., 15 illus. in color., 1 Hardback
  • Sērija : Materials Forming, Machining and Tribology
  • Izdošanas datums: 17-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319959654
  • ISBN-13: 9783319959658
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 110,80 EUR*
  • Standarta cena: 148,58 EUR
  • Ietaupiet 25%
  • Pievienot vēlmju sarakstam
  • Ielikt grozā
  • Daudzums:
  • Noliktavā 1 eksempl.
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • atlaide spēkā tikai noliktavā esošajiem eksemplāriem (cena pasūtot jaunu: 118,86 EUR)
  • Formāts: Hardback, 243 pages, height x width: 235x155 mm, weight: 553 g, 15 Illustrations, color; 80 Illustrations, black and white; XII, 243 p. 95 illus., 15 illus. in color., 1 Hardback
  • Sērija : Materials Forming, Machining and Tribology
  • Izdošanas datums: 17-Aug-2018
  • Izdevniecība: Springer International Publishing AG
  • ISBN-10: 3319959654
  • ISBN-13: 9783319959658
Citas grāmatas par šo tēmu:
This book focus on the challenges faced by cutting materials with superior mechanical and chemical characteristics, such as hardened steels, titanium alloys, super alloys, ceramics and metal matrix composites. Aspects such as costs and appropriate machining strategy are mentioned. The authors present the characteristics of the materials difficult to cut and comment on appropriate cutting tools for their machining. This book also serves as a reference tool for manufacturers working in industry.
1 Introduction
1(8)
1.1 Historical Background
1(3)
1.1.1 Stone Age
1(1)
1.1.2 Bronze Age
2(1)
1.1.3 Iron Age
3(1)
1.2 Modem Engineering Materials
4(3)
1.2.1 Steels
5(1)
1.2.2 Titanium and Its Alloys
5(1)
1.2.3 Superalloys
6(1)
1.2.4 Metal Matrix Composites (MMCs)
6(1)
1.2.5 Ceramics
6(1)
1.3 Superior Characteristics, Major Challenges
7(1)
Reference
7(2)
2 Hardened Steels
9(46)
2.1 Introduction
9(5)
2.1.1 Heat Treatment
10(1)
2.1.2 Cryogenic Treatment
11(1)
2.1.3 Case Hardening
12(2)
2.2 Historical Background and Evolution of Hardened Steels
14(2)
2.3 Metallurgy of Hardened Steels
16(3)
2.4 Characteristics of Hardened Steels
19(1)
2.4.1 High Indentation Hardness
19(1)
2.4.2 Low Ductility (Brittleness)
19(1)
2.4.3 High Hardness/E-modulus Ratio
19(1)
2.4.4 Corrosion Sensitivity
20(1)
2.5 Industrial Applications of Hardened Steels
20(3)
2.5.1 Applications of Case-Hardened Steels
21(1)
2.5.2 Applications of Induction Hardened Steels
21(1)
2.5.3 Applications of Carburized Steels
22(1)
2.6 Challenges in the Machining of Hardened Steels
23(2)
2.7 Hard Turning
25(9)
2.7.1 Hard Turning as an Alternative for Grinding
26(1)
2.7.2 Special Features of Hard Turning
27(2)
2.7.3 Rigidity Imposed Limitations in Hard Turning
29(1)
2.7.4 Surface Quality and Integrity
29(5)
2.8 Mechanics of Chip Formation During Hard Turning
34(4)
2.9 Influential Factors on Chip Formation During Hard Turning
38(4)
2.9.1 Nose Radius
38(1)
2.9.2 Edge Preparation and Tool Condition
38(1)
2.9.3 Feed
39(3)
2.10 Dynamics of Chip Formation
42(1)
2.11 Cutting Forces During Hard Turning
43(1)
2.12 Appropriate Tool Materials for Hard Turning
44(6)
2.12.1 CBN and PCBN Tools
45(3)
2.12.2 Ceramic Tools
48(1)
2.12.3 Cermet (Solid Titanium Carbide) Tools
49(1)
2.13 Surface Finish in Hard Turning
50(1)
2.14 Environmentally Friendly Hard Turning
51(1)
2.15 Hard Milling
51(1)
2.16 Concluding Remarks
52(1)
References
52(3)
3 Titanium and Titanium Alloys
55(42)
3.1 Introduction
55(2)
3.2 Historical Background and Evolution of Titanium
57(2)
3.3 Metallurgy of Titanium
59(5)
3.3.1 Alpha (α) Alloys
61(1)
3.3.2 Near-Alpha (α) Alloys
61(1)
3.3.3 Alpha-Beta (α + β) Alloys
62(1)
3.3.4 Metastable Beta (β) Alloys
62(1)
3.3.5 Beta (β) Alloys
63(1)
3.3.6 Titanium Aluminides
63(1)
3.4 Characteristics of Titanium and Its Alloys
64(4)
3.5 Industrial Applications of Titanium and Its Alloys
68(6)
3.5.1 Aerospace Applications
68(3)
3.5.2 Chemical and Petrochemical Applications
71(1)
3.5.3 Automotive Applications
72(2)
3.6 Challenges in the Machining of Titanium and Its Alloys
74(4)
3.6.1 Poor Thermal Conductivity
75(2)
3.6.2 Chemical Reactivity
77(1)
3.6.3 Low Modulus of Elasticity
77(1)
3.6.4 Hardening Effect
78(1)
3.7 Mechanics of Chip Formation
78(7)
3.7.1 Chip Segmentation Under Adiabatic Shear
80(5)
3.8 Appropriate Tool Materials and Modes of Tool Wear
85(6)
3.8.1 HSS Tools
86(1)
3.8.2 Carbide Tools
87(2)
3.8.3 Ceramic Tools
89(1)
3.8.4 CBN and PCBN Tools
89(1)
3.8.5 Diamond Tools
90(1)
3.9 Application of Coolant in the Machining of Titanium
91(2)
3.9.1 Utilization of Nano-cutting Fluids
92(1)
3.10 Concluding Remarks
93(1)
References
94(3)
4 Superalloys
97(42)
4.1 Introduction
97(2)
4.2 Historical Background and Evolution of Superalloys
99(4)
4.3 Metallurgy of Superalloys
103(5)
4.3.1 Phases of Superalloys
105(1)
4.3.2 Strengthening Mechanisms
106(2)
4.4 Detailed Classification of Superalloys
108(7)
4.4.1 Iron-Based Superalloys
109(2)
4.4.2 Nickel-Based Superalloys
111(2)
4.4.3 Cobalt-Based Superalloys
113(2)
4.5 Characteristics of Superalloys
115(1)
4.5.1 Tensile and Yield Properties
115(1)
4.5.2 Creep Resistance
115(1)
4.5.3 Fatigue Resistance
115(1)
4.5.4 Corrosion Resistance
115(1)
4.6 Industrial Applications of Superalloys
116(3)
4.6.1 Application of Superalloys in Gas Turbines and Jet Engines
116(3)
4.7 Challenges in the Machining of Superalloys
119(5)
4.7.1 High Hot Hardness and Strength
121(1)
4.7.2 High Dynamic Shear Strength
121(1)
4.7.3 Low Thermal Conductivity
122(1)
4.7.4 Formation of Built-up Edge
123(1)
4.7.5 Austenitic Matrix and Work Hardening During Machining
123(1)
4.7.6 Abrasiveness
124(1)
4.8 Mechanics of Chip Formation in Machining of Superalloys
124(3)
4.9 Tool Materials for Conventional Machining of Superalloys
127(6)
4.9.1 Appropriate Cutting Tools for Turning of Superalloys
129(2)
4.9.2 Appropriate Cutting Tools for Milling of Superalloys
131(1)
4.9.3 Modes of Tool Wear When Machining Superalloys
131(2)
4.10 Application of Coolant in the Machining of Superalloys
133(1)
4.11 Concluding Remarks
134(1)
References
135(4)
5 Metal Matrix Composites
139(40)
5.1 Introduction
139(2)
5.2 Historical Background and Evolution of MMCs
141(4)
5.2.1 First Generation
142(1)
5.2.2 Second Generation
142(1)
5.2.3 Third Generation
143(1)
5.2.4 Fourth Generation
144(1)
5.3 Characteristics of Metal Matrix Composites
145(2)
5.3.1 High-Strength and Improved Transverse Properties
145(1)
5.3.2 High Stiffness and Toughness
146(1)
5.3.3 High Operational Temperature
146(1)
5.3.4 Low Sensitivity to Surface Defects
146(1)
5.3.5 Good Thermal and Electrical Conductivity
146(1)
5.4 Classifications of Metal Matrix Composites
147(5)
5.4.1 Classification of MMCs Based on Matrix Materials
147(2)
5.4.2 Classification of MMCs Based on the Type of Reinforcement
149(3)
5.5 Industrial Applications of Metal Matrix Composites
152(2)
5.5.1 Aerospace Applications
153(1)
5.5.2 Automotive and Transportation Applications
154(1)
5.6 Challenges in the Machining of Metal Matrix Composites
154(14)
5.6.1 Machining of Particulate-Reinforced MMCs
155(10)
5.6.2 Machining of Fiber-Reinforced MMCs
165(3)
5.7 Appropriate Tools Materials and Modes of Tool Wear
168(6)
5.7.1 Analytical Modeling of Wear Progression
172(2)
5.8 Concluding Remarks
174(1)
References
175(4)
6 Ceramics
179(26)
6.1 Introduction
179(1)
6.2 Historical Background and Evolution of Ceramics
180(3)
6.3 Material Structure of Ceramics
183(2)
6.3.1 Polycrystalline Ceramics Made by Sintering
184(1)
6.3.2 Glass
184(1)
6.3.3 Glass Ceramics
184(1)
6.3.4 Single Crystals of Ceramic Compositions
184(1)
6.3.5 Chemical Synthesis or Bonding
185(1)
6.3.6 Natural Ceramics
185(1)
6.4 Characteristics of Ceramic Materials
185(1)
6.4.1 Brittleness
185(1)
6.4.2 Poor Electrical and Thermal Conductivity
185(1)
6.4.3 Compressive Strength
186(1)
6.4.4 Chemical Insensitivity
186(1)
6.5 Industrial Applications of Ceramics
186(3)
6.5.1 Structural Applications
186(1)
6.5.2 Electronic Applications
187(1)
6.5.3 Bio-Applications
187(1)
6.5.4 Coating Applications
188(1)
6.5.5 Composites Applications
188(1)
6.6 Challenges in the Machining of Ceramics
189(1)
6.7 Mechanism of Chip Formation
190(1)
6.8 Turning of Ceramic Materials
191(2)
6.9 Grinding of Ceramic Materials
193(1)
6.10 Ultrasonic Machining of Ceramic Materials
194(2)
6.11 Abrasive Water Jet Machining of Ceramic Materials
196(3)
6.12 Electrical Discharge Machining of Ceramic Materials
199(2)
6.13 Laser Machining of Ceramic Materials
201(1)
6.14 Application of Coolant in the Machining of Ceramics
202(1)
6.15 Concluding Remarks
202(1)
References
203(2)
7 Environmentally Conscious Machining
205(34)
7.1 Introduction
206(2)
7.2 Traditional Cutting Fluids
208(5)
7.2.1 Non-Water-Miscible Cutting Fluids
209(1)
7.2.2 Water-Miscible and Water-Based Cutting Fluids
210(3)
7.2.3 Gaseous, Air, and Air--Oil Mists (Aerosols) Cutting Fluids
213(1)
7.2.4 Cryogenic Cutting Fluids
213(1)
7.3 Advanced Nano-Cutting Fluids
213(3)
7.3.1 Characterization and Performance of Nano-Cutting Fluids
215(1)
7.3.2 Challenges in the Application of Nano-Cutting Fluids
215(1)
7.4 Delivery Methods of Cutting Fluids
216(2)
7.4.1 Low-Pressure Flood Cooling
216(1)
7.4.2 High-Pressure Flood Cooling
217(1)
7.4.3 High-Pressure Through-Tool Cooling
218(1)
7.4.4 Mist Cooling
218(1)
7.5 Cutting Fluids and Their Consequent Health Hazards
218(3)
7.5.1 Toxicity
219(1)
7.5.2 Dermatitis
219(1)
7.5.3 Respiratory Disorders
220(1)
7.5.4 Microbial Disorders
220(1)
7.5.5 Cancer
221(1)
7.6 Environmental Considerations in Machining
221(5)
7.6.1 Machining with Minimum Quantity Lubrication (MQL)
223(1)
7.6.2 Dry Machining
224(2)
7.7 Special Cutting Tools
226(5)
7.7.1 Self-propelled Rotary Tools
227(4)
7.8 Machining Titanium and Superalloys Using Rotary Tools
231(2)
7.9 Machining Hardened Steels Using Rotary Tools
233(1)
7.10 Concluding Remarks
234(1)
References
235(4)
Index 239