Atjaunināt sīkdatņu piekrišanu

Macromolecular Engineering, 5 Volume Set: From Precise Synthesis to Macroscopic Materials and Applications 2nd edition [Hardback]

Edited by (Carnegie Mellon University, Pittsburgh, PA, USA), Edited by (University of Massachusetts), Edited by (University of Athens, Greece), Edited by (King Abdullah University of Science and Technology (KAUST))
  • Formāts: Hardback, 3264 pages, height x width x depth: 244x170x75 mm, weight: 3402 g
  • Izdošanas datums: 20-Apr-2022
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527344551
  • ISBN-13: 9783527344550
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 1 348,67 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 3264 pages, height x width x depth: 244x170x75 mm, weight: 3402 g
  • Izdošanas datums: 20-Apr-2022
  • Izdevniecība: Blackwell Verlag GmbH
  • ISBN-10: 3527344551
  • ISBN-13: 9783527344550
Citas grāmatas par šo tēmu:
Macromolecular Engineering Complete and Thorough Resource on Macromolecular Engineering for Researchers and Industry Professionals

This book covers the entire field of macromolecular engineering, from design and preparation of well-defined macromolecules, to precise characterization, all the way to optimization for specific functions and applications. It provides background information, comparative advantages and limitations, the most recent advances of numerous synthetic approaches, characterization techniques, and potential applications.

The second edition has been completely updated and edited by a world-class team of editors led by K. Matyjaszewski. Sample topics covered within the work include:





Synthetic tools to precisely control various aspects of macromolecular structure including chain composition, microstructure, functionality, and topology Modern characterization techniques at the molecular and macroscopic level for various properties of well-defined (co)polymers in solution, bulk and at surfaces The correlation of molecular structure with macroscopic properties additionally affected by processing Self-healing polymers, renewable resources, photopolymerization, click chemistry, organocatalysis, hierarchical self-assembly, nanocarbon, and ionic liquids

Polymer chemists and engineers, materials scientists, and professionals in the plastics and pharmaceutical industries will be able to use Macromolecular Engineering as a completely comprehensive reference work to understand macromolecular engineering and its many practical applications.
Volume 1
List of Contributors
xix
Preface xxxix
Part I Polymer Synthesis I
1(454)
1 Anionic Polymerization of Vinyl and Related Monomers
3(52)
Michel Fontanille
Yves Gnanou
1 Introduction
3(1)
2 General Features of Anionic Polymerization
4(9)
2.1 Polymerizability of Vinyl and Related Monomers
5(1)
2.2 Various Parameters Influencing the Structure and Reactivity of Active Centers
6(2)
2.2.1 Influence of the Type of Monomer
8(1)
2.2.2 Influence of the Nature of Solvent
8(2)
2.2.3 Influence of Additives
10(2)
2.2.4 Influence of the Counterion
12(1)
2.3 Experimental Constraints Related to Anionic Polymerization
12(1)
3 Initiation of Anionic Polymerizations
13(13)
3.1 Initiation by Electron Transfer
13(1)
3.2 Initiation by Nucleophilic Addition to the Double Bond
14(1)
3.2.1 In Polar Solvents
14(2)
3.2.2 In Nonpolar Solvents
16(4)
3.2.3 Bi- and Multifunctional Initiators
20(4)
3.3 Initiation by Alkoxides and Silanolates
24(1)
3.4 Initiation of the Polymerization of Alkyl (Meth)acrylates by Group Transfer
25(1)
4 Propagation Step
26(11)
4.1 Kinetics of the Propagation Step
26(1)
4.1.1 Kinetics of Polymerization in Nonpolar Solvents
26(3)
4.1.2 Polymerizations Carried Out in Polar Media
29(1)
4.2 Anionic Polymerization of (Meth)acrylic Monomers
30(2)
4.2.1 General Characteristics
32(1)
4.2.2 Propagation by Group Transfer
32(1)
4.3 Anionic Copolymerization
33(1)
4.4 Regio- and Stereoselectivity in Anionic Polymerization
34(1)
4.4.1 Cases of Conjugated Dienes
34(1)
4.4.2 Case of Vinyl and Related Monomers
35(2)
5 Persistence of Active Centers
37(3)
5.1 Case of Polystyrenic Carbanions
37(1)
5.2 Case of Polydiene Carbanions
38(1)
5.3 Case of (Meth)acrylic Polymers
39(1)
6 Application of Anionic Polymerization to Macromolecular Synthesis
40(15)
6.1 Prediction of Molar Masses and Control of Their Dispersion
40(1)
6.2 Functionalization of Chain Ends
41(1)
6.3 Synthesis of Graft and Block Copolymers
41(2)
6.4 Star and Dendrimer-Like Polymers
43(3)
6.5 Macrocyclic Polymers
46(1)
Acknowledgment
46(1)
References
46(9)
2 Cationic Macromolecular Engineering
55(60)
Priyadarsi De
Rudolf Faust
1 Mechanistic and Kinetic Details of Living Cationic Polymerization
56(2)
2 Structure-Reactivity Scales in Cationic Polymerization
58(2)
3 Living Cationic Polymerization
60(1)
4 Monomers and Initiating Systems
60(1)
5 Additives in Living Cationic Polymerization
61(1)
6 Living Cationic Polymerization: Isobutylene (IB)
62(8)
6.1 β-Pinene
64(1)
6.2 Styrene (St)
64(1)
6.3 P-Methylstyrene (p-MeSt)
65(1)
6.4 P-Chlorostyrene (p-ClSt)
66(1)
6.5 2,4,6-Trimethylstyrene (TMeSt)
66(1)
6.6 P-Methoxystyrene (p-MeOSt)
66(1)
6.7 α-Methylstyrene (aMeSt)
67(1)
6.8 Indene
67(1)
6.9 N-Vinylcarbazole
68(1)
6.10 Vinyl Ethers
68(2)
7 Functional Polymers by Living Cationic Polymerization
70(4)
7.1 Functional Initiator Method
70(2)
7.2 Functional Terminator Method
72(2)
8 Telechelic Polymers
74(2)
9 Macromonomers
76(12)
9.1 Synthesis Using a Functional Initiator
76(2)
9.2 Synthesis Using a Functional Capping Agent
78(2)
9.2.1 Chain-End Modification
80(1)
9.2.2 Highly Reactive Polyisobutylene (HRPIB)
80(1)
9.2.3 Synthesis of HRPIB Using Living Cationic Polymerization
81(3)
9.2.4 Block Copolymers
84(1)
9.3 Linear Diblock Copolymers
85(3)
10 Linear Triblock Copolymers
88(12)
10.1 Synthesis Using Difunctional Initiators
88(1)
10.2 Synthesis Using Coupling Agents
89(1)
10.3 Block Copolymers with Nonlinear Architecture
90(1)
10.4 Synthesis of AnBn Hetero-arm Star-block Copolymers
91(1)
10.5 Synthesis of AA'B, ABB', and ABC Asymmetric Star-block Copolymers Using Furan Derivatives
92(1)
10.6 Block Copolymers Prepared by the Combination of Different Polymerization Mechanisms
92(1)
10.6.1 Combination of Cationic and Anionic Polymerization
92(2)
10.6.2 Combination of Living Cationic and Ring-Opening Polymerization
94(2)
10.6.3 Combination of Living Cationic and Radical Polymerization
96(1)
10.6.4 Combination of Living Cationic Polymerization and Click Chemistry
97(1)
10.6.5 PIB-Based Polyurethanes
97(3)
11 Surface-Initiated Polymerization Polymer Brushes
100(15)
References
101(14)
3 Ionic and Coordination Ring-Opening Polymerization
115(124)
Stanislaw Penczek
Tadeusz Biela
Marek Cypryk
Andrzej Duda
Grzegorz Lapienis
Przemyslaw Kubisa
Julia Pretula
Stanislaw Slomkowski
Ryszard Szymanski
1 Introduction
115(3)
2 Thermodynamics of the Ring-Opening Polymerization
118(10)
2.1 Equilibrium Monomer Concentration. Ceiling/Floor Temperatures
118(2)
2.1.1 Equilibrium Comonomer Concentration. Ceiling/Floor Temperatures in Copolymerization
120(1)
2.1.2 Ring-Chain Equilibria in ROP
121(2)
2.2 Particular Results Related to Thermodynamics of the Ring-Opening Polymerization
123(1)
2.2.1 Thermodynamics of γ-Butyrolactone. Homo and Copolymerization
123(3)
2.2.2 Equilibrium Copolymerization
126(2)
3 Basic Mechanistic Features of the Ring-Opening Polymerization
128(53)
3.1 Anionic and Coordination Ring-Opening Polymerization of Cyclic Ethers and Sulfides
128(1)
3.1.1 Initiators and Initiation
128(1)
3.1.2 Active Centers. Structures and Reactivities
128(2)
3.1.3 Controlled Anionic and Coordination Polymerization of Oxiranes
130(3)
3.1.4 Stereocontrolled Plymerization of Chiral Oxiranes
133(1)
3.2 Controlled Synthesis of Aliphatic Polyesters by Anionic and Coordination Ring-Opening Polymerization
134(1)
3.2.1 Initiators and Active Centers. Structures and Reactivities
134(5)
3.2.2 Controlled Polymerization of Cyclic Esters Initiated with "Multiple-Site" Metal Alkoxides and Carboxylates
139(2)
3.2.3 Controlled Polymerization of Cyclic Esters Initiated with "Single-Site" Metal Alkoxides
141(1)
3.2.4 Poly(P-hydroxybutyrate)s by Oxiranes Carbonylation
142(1)
3.2.5 Stereocontrolled Polymerization of Chiral Cyclic Esters
143(6)
3.2.6 Stereocomplexes of Aliphatic Polyesters
149(6)
3.3 Controlled Synthesis of Aliphatic Polycarbonates by Anionic and Coordination Ring-Opening Polymerization
155(1)
3.4 Controlled Synthesis of Branched and Star-Shaped Polyoxiranes and Polyesters
156(1)
3.4.1 Anionic Polymerization of Oxiranes
156(1)
3.4.2 Starlike Polyesters by Coordination Polymerization of Cyclic Esters
157(1)
3.4.3 Characterization Techniques for Branched and Starlike Macromolecules
158(3)
3.4.4 Two-Dimensional Chromatography
161(2)
3.5 Controlled Synthesis of Polyamides by Anionic and Coordination Ring-Opening Polymerization
163(1)
3.5.1 Polymerization of Lactams
163(1)
3.5.2 Polymerization of N-Carboxyanhydrides of Amino Acids (NCAs)
164(3)
3.6 Cationic Ring-Opening Polymerization
167(1)
3.6.1 Propagation in Cationic Ring-Opening Polymerization
168(1)
3.6.2 Chain Transfer to Polymer in the Cationic Ring-Opening Polymerization
169(2)
3.6.3 Activated Monomer Mechanism (AMM) in Cationic Ring-Opening Polymerization of Cyclic Ethers and Esters
171(4)
3.6.4 Cationic Systems for Polymerization of Epoxy Resins
175(1)
3.6.5 Branched and Star-Shaped Polymers Prepared by Cationic Ring-Opening Polymerization
176(2)
3.7 Cationic Polymerization of Cyclic Imino Ethers (Oxazolines)
178(3)
4 Ring-Opening Polymerization of Cyclic Phosphates and Related Cyclic Phosphorous Compounds
181(11)
4.1 Anionic Polymerization
181(3)
4.2 Cationic Polymerization
184(1)
4.3 Thermodynamics, Kinetics, and Mechanism of Polymerization
184(3)
4.4 Synthesis of Branched Polyphosphates
187(1)
4.5 Copolymerization
188(1)
4.5.1 Copolymerization of Cyclic Phosphates
188(1)
4.5.2 Copolymerization of Cyclic Phosphates with Other Cyclic Esters
189(1)
4.6 Synthesis of Star-Shaped Polyphosphates
190(1)
4.7 Some Properties and Applications of Poly(alkylene phosphate)s
191(1)
5 Ring-Opening Polymerization of Cyclosiloxanes
192(8)
5.1 Thermodynamics of the Ring-Opening Polymerization of Siloxanes
192(1)
5.2 Anionic Polymerization of Cyclic Siloxanes
193(1)
5.2.1 Initiators and Initiation
193(2)
5.2.2 Active Centers. Structures and Reactivities
195(1)
5.2.3 Propagation and Termination
195(1)
5.2.4 Chain Transfer to Polymer
195(1)
5.2.5 Applications
196(1)
5.3 Cationic Ring-Opening Polymerization of Cyclic Siloxanes
196(1)
5.3.1 Initiators and Initiation
196(1)
5.3.2 Active centers. Structures and Reactivities
197(1)
5.3.3 Propagation in Cationic Ring-Opening Polymerization
197(1)
5.3.4 Cyclization and Chain Transfer to Polymer in the Cationic Ring-Opening Polymerization
198(1)
5.3.5 Activated Monomer Mechanism in Cationic Ring-Opening Polymerization of Cyclic Siloxanes
198(1)
5.3.6 New Polymerization Processes
199(1)
5.4 Controlled Polymerization of Cyclic Siloxanes
199(1)
5.5 Emulsion Polymerization
200(1)
6 Dispersion Ring-Opening Polymerization
200(7)
7 Final Remarks
207(32)
Acknowledgment
207(1)
References
207(32)
4 Poly(2-oxazoline)s
239(48)
Joachim F. R. Van Ouyse
Richard Hoogenboom
1 Introduction
239(1)
2 Macromolecular Design of poly(2-alkyl/aryl-2-oxazoline)s
240(25)
2.1 The Cationic Ring-Opening Polymerization of 2-Oxazolines
240(1)
2.2 Monomer Design and Synthesis
241(4)
2.3 The Mechanism of the Cationic Ring-Opening Polymerization of 2-Oxazolines
245(1)
2.3.1 Initiation
245(5)
2.3.2 Propagation
250(6)
2.3.3 Chain Transfer
256(2)
2.3.4 Termination
258(2)
2.4 Post-polymerization Modification of PAOx in Macromolecular Design
260(1)
2.4.1 Post-polymerization Modification of PAOx
260(1)
2.4.2 Post-polymerization Modification of PAOx via Hydrolysis
260(2)
2.4.3 Macromolecular Design of Functional PAOx
262(3)
3 Applications
265(9)
3.1 Industrial Applications
268(1)
3.2 Opportunities in Biomedical Applications
268(2)
3.3 Opportunities in Nonbiomedical Applications
270(4)
4 Conclusions
274(13)
References
274(13)
5 Living/Controlled Radical Polymerization: Nitroxide-mediated Polymerization
287(54)
Catherine Lefay
Jason C. Morris
Anna Lin
Yohann Guillaneuf
Didier Gigmes
1 Introduction
287(1)
2 Main Improvements of the Nitroxide-mediated Polymerization Technique
287(14)
2.1 From a Bimolecular to a Unimolecular Initiating System
288(1)
2.2 Design of Nitroxides and Alkoxyamines
289(3)
2.3 Range of Monomers
292(2)
2.4 The Challenge of the Methacrylic Monomers
294(7)
3 Advanced Macromolecular Architectures and Materials Prepared by NMP
301(7)
3.1 Chain-End-Functionalized Polymer Chains
301(1)
3.1.1 α-Functionalized Polymer
301(1)
3.1.2 ω-Functionalized Polymer
301(1)
3.2 Di- and Triblock Copolymers
302(1)
3.3 Other Architectures (Branched, Star, and Hyperbranched)
303(1)
3.3.1 Star Polymers
303(1)
3.3.2 Branched Polymers
304(3)
3.3.3 Hyperbranched Polymers
307(1)
4 Applications of the NMP Products
308(10)
4.1 Biomaterials
308(1)
4.1.1 Glycopolymers
308(1)
4.1.2 Bioconjugates with Peptides and Proteins
308(1)
4.1.3 Elaboration of Polymer Prodrugs
309(2)
4.1.4 Antibacterial Materials
311(1)
4.2 Micro- and Optoelectronics
311(2)
4.3 Nanoporous Materials
313(1)
4.4 NMP Polymers as Additives
313(1)
4.5 Sequence-Controlled Polymers
314(1)
4.6 NMP Polymers for Lithium Battery Applications
314(2)
4.7 Degradable Materials
316(2)
5 Nitroxide-Mediated Photopolymerization (NMP2)
318(10)
5.1 Bimolecular Photosensitization
318(1)
5.2 Unimolecular Photosensitization
319(3)
5.3 Application to Patterning
322(3)
5.4 Multicomponent Systems
325(3)
6 Conclusion
328(13)
References
329(12)
6 Macromolecular Engineering by Atom Transfer Radical Polymerization
341(52)
Krzysztof Matyjaszewski
1 Introduction
341(1)
2 Mechanism and Synthesis
342(12)
2.1 Traditional ("Normal") ATRP
342(1)
2.2 Reverse ATRP
343(1)
2.3 Simultaneous Reverse and Normal ATRP and AGET
344(1)
2.4 Mechanism of ATRP
345(1)
2.4.1 ISET versus OSET and Effect of RX and Cu/L on Kinetics
345(3)
2.4.2 Very Active Catalytic Systems
348(1)
2.5 ARGET, ICAR, and SARA ATRP
348(3)
2.6 Eatrp
351(1)
2.7 PhotoATRP
352(1)
2.8 MechanoATRP
353(1)
2.9 Continuous Flow and AutoATRP
354(1)
3 Control of Macromolecular Architecture
354(18)
3.1 Polymer Composition
354(1)
3.1.1 Gradient Copolymers
355(1)
3.1.2 Sequence Control
356(1)
3.1.3 Block Copolymers
356(1)
3.2 Control of Polymer Topology
357(1)
3.2.1 Graft and Comb-Shaped Copolymers
357(2)
3.2.2 Macromolecular Brushes
359(2)
3.2.3 (Hyper)Branched Copolymers and Stars
361(4)
3.3 Functionality
365(2)
3.4 Organic/Inorganic Hybrids
367(2)
3.5 Bioconjugates
369(3)
4 Selected Applications
372(5)
4.1 Thermoplastic Elastomers
372(1)
4.2 Nanocarbons
373(2)
4.3 Surfactants, Dispersants, Additives
375(1)
4.4 Electronic Materials
375(1)
4.5 Self-Healing
376(1)
4.6 Biomedical Materials
376(1)
4.7 Commercial Applications
377(1)
5 Outlook
377(16)
Acknowledgments
379(1)
References
379(14)
7 Reversible Deactivation Radical Polymerization: RAFT
393(62)
Graeme Moad
1 Introduction
393(1)
2 The Life of RAFT (Mechanisms in RAFT Polymerization)
394(2)
3 Monomers in RAFT Polymerization
396(4)
4 RAFT Agents
400(7)
4.1 Effect of the Activating Group (Z) on RAFT Agent Properties
400(6)
4.2 Effect of the Homolytic Leaving Group (R) on RAFT Agent Properties
406(1)
4.3 RAFT Agent Selection
406(1)
5 Initiators in RAFT Polymerization
407(3)
6 Kinetic Simulation of RAFT Polymerization
410(3)
6.1 Simulation of the Molar Mass Distribution
410(2)
6.2 Method of Moments
412(1)
7 RAFT Copolymer Synthesis
413(2)
7.1 Gradient Copolymers
413(1)
7.2 Nongradient (Random) Copolymers
414(1)
8 Sequence-defined Polymers by RAFT
415(6)
8.1 (Multi)block Copolymer Synthesis
415(3)
8.2 (Iterative) RAFT Single-Unit Monomer Insertion (SUMI)
418(2)
8.3 Template Polymerization
420(1)
9 To the Stars by RAFT (Star Synthesis)
421(2)
10 Surface-initiated RAFT Polymerization (SI-RAFT)
423(1)
11 Network Polymer Synthesis
424(1)
12 Carbonothioylsulfanyl End-Group Removal/Transformation
424(31)
12.1 Radical-Induced End-Group Transformation
426(1)
12.1.1 Radical Addition-Fragmentation Coupling
426(1)
12.1.2 Radical-Induced Reduction
426(1)
12.1.3 Radical-Induced Oxidation
427(1)
12.2 Nucleophilic End-Group Transformation
427(1)
12.3 Thermolysis
428(2)
12.4 Oxidative End-group Transformation
430(1)
12.5 Pericyclic Reactions of Carbonothioylsulfanyl Groups
431(1)
References
432(23)
Volume 2
List of Contributors
xvii
Preface xxxvii
Part II Polymer Synthesis II
455(394)
8 Ring-Opening Metathesis Polymerization: Mechanisms
457(50)
Katharina Herz
Iris Elser
Michael ft Buchmeiser
1 Introduction: Olefin Metathesis
457(1)
2 Olefin Metathesis Catalysts
458(16)
2.1 Story of Metathesis Catalysts
458(2)
2.2 Schrock-Type Catalysts
460(5)
2.3 Group VI Metal Imido Alkylidene NHC Complexes
465(3)
2.4 Grubbs-Type Catalysts
468(6)
3 Ring-Opening Metathesis Polymerization (ROMP)
474(18)
3.1 Introduction
474(2)
3.2 Stereoselective ROMP
476(1)
3.2.1 ROMP with Schrock-Type Catalysts
476(10)
3.2.2 ROMP with Grubbs-Type Catalysts
486(3)
3.3 Applications of ROMP in Materials Science
489(3)
4 Summary and Prospects
492(15)
References
492(14)
Further Readings
506(1)
9 Emerging Trends in Ring-opening Metathesis Polymerization
507(50)
Edgar Cao
Loic Pichavant
Thi Kim Hoang Trinh
Abraham Chemtob
Damien Quimener
Mien Pinaud
Valerie Heroguez
1 Introduction
507(1)
2 Recent Developments in Photochemically Activated ROMP
508(12)
2.1 Catalyst Activation Through Ligand Photodissociation
509(1)
2.1.1 Tungsten-based Precatalysts
509(1)
2.1.2 Ruthenium-based Precatalysts
510(3)
2.2 Catalyst Activation Through In Situ Photogeneration of Ligands
513(2)
2.3 Catalyst Activation Through Conformational Change of Chelated Ligand
515(1)
2.3.1 Chelation by Sulfur Atom
515(2)
2.3.2 Chelation by Nitrogen Atom
517(1)
2.4 Metal-free PhotoROMP via Photoinduced Electron Transfer
518(1)
2.4.1 Genesis and General Principle
518(1)
2.4.2 Photoredox ROMP
519(1)
2.5 Conclusion
520(1)
3 Polymeric Nanoparticles by ROMP
520(1)
3.1 In Dispersed Media
521(2)
3.2 Self-assembly
523(2)
3.3 Hybrid Particles via Surface-Initiated ROMP
525(3)
4 Therapeutic Polymers and Nanoparticles
528(10)
4.1 Bioactive Polymers
528(1)
4.1.1 Peptide Functionalized Polymers
528(1)
4.1.2 Functionalized Polymers for Imaging
529(2)
4.1.3 Polymers with Antibacterial Activities
531(1)
4.1.4 Oligonucleotide Functionalized Polymers
532(1)
4.2 Nanoparticles for Drug Delivery
532(1)
4.2.1 Nano-objects by Polymer Self-assembly
532(4)
4.2.2 Nanoparticles by ROMP in Dispersed Media
536(2)
5 Functional Materials by ROMP
538(7)
5.1 Monolithic Supports
538(1)
5.1.1 Particle Separation
538(1)
5.1.2 Catalysis
539(1)
5.1.3 Tissue Engineering
539(1)
5.1.4 Other Hybrid Structures
540(1)
5.2 Nanocomposite Membranes
540(1)
5.2.1 Anion Exchange Membranes
541(2)
5.2.2 Gas Membranes
543(2)
5.3 Future Direction for ROMP-based Nanocomposite Membranes
545(1)
6 Conclusion
545(12)
References
545(12)
10 Control of Polycondensation
557(72)
Tsutomu Yokozawa
Yoshihiro Ohta
1 Monomer Reactivity Control (Stoichiometric-Imbalanced Polycondensation)
557(10)
1.1 Polycondensation of α,α-Dihaiogenated Monomers
558(2)
1.2 Superacid-Catalyzed Polycondensation
560(1)
1.3 Pd-Catalyzed Polycondensation
561(5)
1.4 Crystallization Polycondensation
566(1)
1.5 Nucleation-Elongation Polycondensation
567(1)
2 Sequence Control
567(7)
2.1 Sequential Polymers from Symmetrical and Unsymmetrical Monomers
568(4)
2.2 Sequential Polymers from Two Unsymmetrical Monomers
572(1)
2.3 Sequential Polymers from Two Symmetrical Monomers and One Unsymmetrical Monomer
572(1)
2.4 Sequential Polymers from Two Symmetrical Monomers and Two Unsymmetrical Monomers
573(1)
3 Molecular Weight and Dispersity Control
574(15)
3.1 Transfer of Reactive Species
574(4)
3.2 Different Substituent Effects Between Monomer and Polymer
578(1)
3.2.1 Resonance Effect (Polymerization of p-Substituted Monomers)
579(4)
3.2.2 Inductive Effect (m-Substituted Monomers)
583(1)
3.3 Transfer of Catalyst
584(5)
4 Chain Topology and Polymer Morphology Control
589(13)
4.1 Cyclic Polymers
589(4)
4.2 Hyperbranched Polymers
593(1)
4.2.1 Polyphenylene
593(1)
4.2.2 Polyester
594(1)
4.2.3 Polyamide
595(1)
4.2.4 Polyether
596(1)
4.2.5 Poly(Ether Ketone) and Poly(Ether Sulfone)
597(1)
4.2.6 Poly(Ether Imide)
598(1)
4.2.7 Polyurethane and Polyurea
599(1)
4.2.8 Long-Chain Branched Polymer
599(2)
4.3 Polymer Morphology Control
601(1)
5 Condensation Polymer Architecture
602(27)
5.1 Block Copolymers
603(1)
5.1.1 Block Copolymers of Condensation Polymers
603(4)
5.1.2 Block Copolymers of Condensation Polymers and Coil Polymers
607(4)
5.2 Star Polymers
611(2)
5.3 Graft Polymers
613(2)
References
615(14)
11 Aliphatic Poly(carbonate)s: Syntheses, Structures, and Applications
629(46)
Lan-fang Hu
Cheng-Jian Zhang
Xing-Hong Zhang
1 Introduction
629(2)
2 Copolymerization of C02 with Epoxides
631(21)
2.1 Metal Catalysts
631(1)
2.1.1 Porphyrin Metal Complexes
632(1)
2.1.2 Salen Type Metal Complexes
633(4)
2.1.3 Zinc β-Diiminate (BDI) Catalysts
637(2)
2.1.4 Bi- and Multi-metallic Catalysts
639(1)
2.1.5 Double Metal Cyanide Complex (DMCC)
640(2)
2.1.6 Zinc Dicarboxylate Catalysts
642(1)
2.1.7 Rare-Earth Coordination Complexes
642(1)
2.2 Organocatalysts for the Copolymerization of C02 with Epoxides
643(1)
2.2.1 Alkyl (Aryl) Borane/Lewis Bases Pairs
643(3)
2.2.2 Hydrogen Bond Donor/Lewis Base Pairs
646(1)
2.3 Carbon Dioxide-Based Block Copolymers
647(5)
3 Condensation of Dialkyl Carbonates with Diols
652(4)
3.1 Metal Catalysts
652(1)
3.2 Organocatalysts
653(2)
3.3 Enzyme Catalysts
655(1)
4 Condensation of Carbon Dioxide, Diols, and Dihalides
656(2)
5 Ring-Opening Polymerization of Cyclic Carbonates
658(2)
6 Properties
660(4)
6.1 Thermal and Mechanical Properties
660(2)
6.2 Biodegradability
662(1)
6.3 Self-Assembly for Nanomaterials
662(2)
7 Applications
664(1)
8 Summary and Outlook
665(10)
References
666(9)
12 Polymer Synthesis by Enzymatic Catalysis
675(77)
Katja Loos
1 Introduction
675(1)
2 Enzymatic Polymerization of Polyester
676(14)
2.1 Enzyme-Catalyzed Polycondensations
678(1)
2.2 Self-Condensation Reaction
679(1)
2.3 AA-BB Type Enzymatic Polyesterfication
680(2)
2.4 Polyol Polyesters from Condensation Copolymerizations
682(2)
2.5 Use of Activated Enol Esters in Condensation Polymerizations
684(2)
2.6 Enzyme-Catalyzed Ring-Opening Polymerizations (ROP)
686(1)
2.7 Enzymatic Ring-Opening Co-polymerizations
687(1)
2.8 Polymerase-Induced Synthesis of Storage Polyester
687(3)
3 Enzyme-Catalyzed Synthesis of Polyamides and Polypeptides
690(8)
3.1 Catalysis via Protease
691(2)
3.2 Catalysis via Lipase
693(1)
3.3 Polymerase-Induced Synthesis of Storage Polyamides
694(2)
3.3.1 Cyanophycin Synthetases
696(2)
4 Enzymatic Polymerization of Vinyl Polymers
698(8)
4.1 General Mechanism and Enzyme Kinetics
698(1)
4.2 Peroxidase-Initiated Polymerizations
699(3)
4.3 Selected Examples for Peroxidase-Initiated Polymerizations
702(3)
4.4 Laccase-Initiated Polymerization
705(1)
4.5 Miscellaneous Enzyme Systems
705(1)
5 Enzymatic Synthesis of Electrically Conductive Polymers
706(19)
5.1 Polyanion-Assisted Enzymatic Polymerization
707(1)
5.2 Polycation-Assisted Templated Polymerization of Aniline
708(1)
5.3 Synthesis of PANI in Template-Free, Dispersed, and Micellar Media
709(1)
5.4 Synthesis in Dispersed Media
709(1)
5.5 Enzymatic Synthesis of PANI Using Anionic Micelles as Templates
710(1)
5.6 Biomimetic Synthesis of PANI
710(1)
5.7 Synthesis of PANI Using Enzymes Different from HRP
711(2)
5.8 PANI Films and Nanowires via Enzymatic Synthesis
713(1)
5.9 Enzymatic and Biocatalytic Synthesis of Other Conductive Polymers
714(1)
5.9.1 Enzymatic and Biocatalytic Synthesis of Polypyrrole
714(11)
5.9.2 Enzymatic and Biocatalytic Synthesis of Polythiophenes
715(1)
6 Enzymatic Polymerization of Polysaccharides
715(2)
6.1 Enzymatic Polymerization of Polysaccharides Using Glycosyl Transferases
717(1)
6.1.1 Enzymatic Polymerization of Amylose with Glycogen Phosphorylase
717(3)
6.1.2 Branching Enzyme
720(1)
6.1.3 Other Enzymes
721(2)
6.2 Enzymatic Polymerization of Polysaccharides Using Glucosidases
723(1)
7 Conclusions
724(28)
References
725(27)
13 Polymerizations in Aqueous Dispersed Media
752(35)
Connor A. Sanders
Michael F. Cunningham
1 Introduction
752(1)
2 Emulsion Polymerization
752(10)
2.1 Reversible Deactivation Radical Polymerization (RDRP)
753(1)
2.1.1 Nitroxide-Mediated Polymerization (NMP)
754(1)
2.1.2 Atom-Transfer Radical Polymerization (ATRP)
755(3)
2.1.3 Reversible Chain Transfer
758(4)
2.2 Ring-Opening Metathesis Polymerization
762(1)
3 Miniemulsion Polymerization
762(5)
3.1 Reversible Deactivation Radical Polymerization
762(1)
3.1.1 Nitroxide-Mediated Polymerization (NMP)
762(1)
3.1.2 Atom Transfer Radical Polymerization (ATRP)
763(3)
3.1.3 Reversible Chain Transfer
766(1)
3.2 Ring-Opening Metathesis Polymerization
766(1)
4 Microemulsion Polymerization
767(2)
4.1 Reversible Deactivation Radical Polymerization
767(1)
4.1.1 Nitroxide-Mediated Polymerization (NMP)
767(1)
4.1.2 Atom Transfer Radical Polymerization (ATRP)
768(1)
4.1.3 Reversible Chain Transfer
768(1)
5 Dispersion Polymerization
769(1)
6 Surfactant-Free Processes
769(4)
6.1 Polymerization-Induced Self-Assembly (PISA)
770(3)
7 Suspension Polymerization
773(3)
7.1 Reversible Deactivation Radical Polymerization (RDRP)
773(1)
7.2 Microbead Preparation
774(1)
7.2.1 Functional Microbeads
774(1)
7.2.2 Microcapsule Preparation
775(1)
8 Conclusions
776(11)
References
776(11)
14 Macromolecular Engineering by Photochemical Routes
787(18)
Gorkem Yilmazand YusufYagci
1 Combination of Conventional Photoinduced Polymerizations with Other Modes of Polymerizations
788(1)
2 Photoinduced Controlled Radical Polymerization
789(8)
3 Photoinduced Step-Growth Polymerizations
797(2)
4 Photoinduced Click Reactions
799(6)
References
801(4)
15 Polymerization Induced by Light
805(44)
J. Lalevee
I. P. Fouassier
1 Introduction
805(2)
2 Absorption of Light and Irradiation Sources
807(2)
2.1 Light Sources
807(1)
2.2 Absorption of Light by a Molecule
808(1)
2.3 Absorption Spectra
808(1)
3 Photosensitive Systems for the Initiation of a Polymerization
809(5)
3.1 Photoinitiators
809(1)
3.1.1 Radical Photoinitiators
809(1)
3.1.2 Cationic Photoinitiators
810(1)
3.1.3 Anionic Photoinitiators
810(1)
3.1.4 Photoacid and Photobase Generators
810(2)
3.2 Photosensitizers
812(1)
3.3 Properties of Photoinitiators and Photosensitizers
812(2)
3.4 Excited State Reactivity
814(1)
4 Photopolymerizable Media
814(5)
4.1 Formulations
814(1)
4.2 Monomer and Oligomer Systems
815(1)
4.3 Looking for Specific Properties
815(3)
4.4 Kinetics and Efficiency of a Photopolymerization Reaction
818(1)
4.5 Monitoring of the Photopolymerization Reaction
819(1)
5 Photochemical and Chemical Reactivity of a Photocurable Formulation
819(2)
5.1 Photoinitiation Quantum Yield
819(1)
5.2 Excited State Processes
820(1)
5.3 Rate Constants of the Chemical Reactions
820(1)
5.4 Reactivity in Solution vs. Bulk
821(1)
6 Photopolymerization Reactions
821(12)
6.1 Radical Photopolymerization
821(2)
6.2 Cationic Photopolymerization
823(1)
6.3 Thiol-ene Photopolymerization
823(2)
6.4 Photopolymerization of Waterborne Systems
825(1)
6.5 Photopolymerization of Powder Formulations
826(1)
6.6 Charge-Transfer Photopolymerization
826(1)
6.7 Formation on Interpenetrated Polymer Networks (IPNs). Hybrid Cure Polymerization
827(1)
6.8 Sol-Gel Photopolymerization
828(1)
6.9 Two-Photon Photopolymerization
828(1)
6.10 Controlled Photopolymerization
828(1)
6.11 Specific Reactions in Particular Environments or Conditions
829(4)
7 Conclusion and Trends
833(16)
References
835(14)
Volume 3
List of Contributors
xxi
Preface xli
Part III Macromolecular Architectures
849(606)
16 Orthogonal Multiple Click Reactions for Macromolecular Design
857(36)
Hakan Durmaz
Umit Tunca
1 Introduction
851(1)
2 Click Reactions in Polymer Chemistry
851(8)
2.1 Copper-Catalyzed Azide-Alkyne Cycloaddition (CuAAC) Reactions
851(1)
2.2 Diels-Alder Cycloaddition Reactions
852(2)
2.3 Thiol-Based Reactions
854(1)
2.4 Nitroxide Radical Coupling (NRC) Reactions
855(1)
2.5 Nucleophilic Reactions on the Perfluoroaryl Groups
856(1)
2.6 Sulfur (VI) Fluor Exchange (SuFEx) Reactions
857(1)
2.7 Michael Addition Reactions
858(1)
3 Multicomponent Reactions (MCRs) in Polymer Chemistry: New Candidates to Click Reactions Family
859(2)
3.1 Passerini, Ugi, Biginelli, and Kabachnik-Fields Reaction
859(2)
4 Orthogonal Click Combinations
861(13)
4.1 Orthogonal Double-Click Combinations
862(12)
4.2 Orthogonal Triple- and Quadruple-Click Combinations
874(1)
5 MCRs and Click Combinations
874(10)
5.1 Passerini + CuAAC, Passerini + Thiol-Yne, Passerini + Thiol-PFP Exchange, and Passerini + AAC Combinations
874(5)
5.2 Ugi + Thiol-Ene, Ugi + CuAAC, and Ugi + SPAAC Combinations
879(3)
5.3 Biginelli + Thiol-Ene and Biginelli + CuAAC Combinations
882(1)
5.4 Kabachnik-Fields + CuAAC + Diels-Alder Combination
883(1)
6 Conclusions and Outlook
884(9)
References
885(8)
17 Tailoring Charged Block Copolymer Architecture for Performance
893(60)
Benjamin T. White
Boer Liu
Kevin J. Drummey
Xi Chen
Timothy E. Long
1 Introduction
893(1)
2 Linear Block Copolymers
894(21)
2.1 Synthesis
894(4)
2.2 Diblock Copolymers
898(1)
2.2.1 Bulk Morphology
898(2)
2.2.2 Solution Morphology
900(2)
2.2.3 Ion Transport Properties
902(2)
2.3 Triblock Copolymers
904(2)
2.3.1 Ion Exchange Membranes
906(2)
2.3.2 Electromechanical Transducers
908(3)
2.4 Multiblock Copolymers
911(1)
2.4.1 Ion Exchange Membranes
911(2)
2.4.2 Electromechanical Transducers
913(2)
3 Branched Ionic Block Copolymers
915(8)
3.1 Ionic Block Copolymer Brush
915(1)
3.1.1 Synthesis and Structure-Property Relationships
915(2)
3.1.2 Biological Applications
917(1)
3.2 Star and Micelle-like Ionic Block Copolymer
918(3)
3.3 Cross-linked Ionic Block Copolymers and Block Copolymer Ionic Gels
921(2)
4 Segmented Block Copolymers
923(4)
4.1 Ionenes
924(2)
4.2 Polyurethane- and Polyester-based Ionomers
926(1)
5 Multiply Charged Block Copolymers
927(11)
5.1 Recent Synthetic Advances for Highly Charged Monomers
928(1)
5.2 Multiple Cationic Charged Monomers and Corresponding Block Copolymers
928(1)
5.2.1 Monomers Containing Multiple Cationic Charges
928(4)
5.2.2 Multiply Charged Cationic Block Copolymers
932(3)
5.3 Incorporating Multiple Anions or Acid Groups into Block Copolymers
935(1)
5.3.1 Sulfonated Systems
935(2)
5.3.2 Phosphonated, Carboxylated, and Other Acidic Systems
937(1)
6 Conclusions
938(15)
References
941(12)
18 Polymerization-Induced Self-Assembly: From Macromolecular Engineering Toward Applications
953(84)
Fanny Coumes
Francois Stoffelbach
Jutta Rieger
1 Introduction
953(1)
2 Macromolecular Engineering by PISA
954(30)
2.1 Different Polymerization Techniques used in PISA to Control Polymerization
954(1)
2.1.1 Anionic Polymerization
954(1)
2.1.2 Reversible-Deactivation Radical Polymerization
955(21)
2.1.3 Metathesis Polymerization
976(3)
2.2 Different Processes used in PISA
979(1)
2.3 Macromolecular Architectures by PISA
980(1)
2.3.1 Diblock Copolymers by RAFT-Mediated PISA: Z vs. R-Group Approach
980(1)
2.3.2 Beyond Diblock Copolymers by RAFT-Mediated PISA
981(1)
2.3.3 Use of Multifunctional RAFT Agents: Y-Shape and Stars
982(1)
2.4 Functional Nanoparticles
983(1)
3 Control Over the Particle Morphology
984(14)
3.1 From Spherical to Anisotropic Block Copolymer Particles
984(6)
3.2 Main Parameters that Impact the Particle Morphology
990(1)
3.2.1 Varying the Molar Mass
991(1)
3.2.2 Varying the Chemical Nature of the Solvophobic Block
992(1)
3.2.3 Varying the Solvent Quality
993(1)
3.2.4 PISA in Aqueous Media: Varying pH and/or Ionic Strength
994(1)
3.2.5 Varying the Block Copolymer Architecture via the RAFT Agent
994(1)
3.2.6 Using Binary Mixtures of Macromolecular and Molecular RAFT Agents: Polymerization-Induced Cooperative Assembly (PICA)
995(1)
3.2.7 Varying the Topology of the Shell or the Core
995(1)
3.3 Strategies to Promote the Formation of Specific Morphologies
996(1)
3.3.1 Using Mesogenic Monomers
996(1)
3.3.2 Using Monomers Forming Supramolecular Interactions (H-Bonding or Polyion Complexes)
996(1)
3.3.3 Using H-Bonding RAFT Agents to Stir ID Assembly into Fibers
997(1)
3.3.4 Hierarchical Assembly Between Particles
997(1)
4 PISA-Derived (Nano)materials and Possible Applications
998(18)
4.1 Surfactant-Free Latexes
998(1)
4.2 Biomedical Applications
999(1)
4.2.1 Polymer Nanoparticles as Drug Delivery Systems
1000(4)
4.2.2 From Encapsulating Large Molecules Within Biomimetic Polymersomes Toward Enzymatic Nanoreactors
1004(1)
4.2.3 Stimuli-Responsive Gels for Drug Delivery and Cell Storage
1004(2)
4.2.4 Iron Oxide Polymer Hybrids for Biomedical Applications
1006(1)
4.3 Pickering Emulsions
1007(2)
4.4 PISA Nanoparticles as (Sacrificial) Templates for Inorganic (Nano) materials
1009(1)
4.4.1 Nanocomposites Through Occlusion Within Inorganic Host Crystals
1010(1)
4.5 Colloidal Nanocatalysts
1010(2)
4.6 Membranes for Water Ultrafiltration
1012(1)
4.7 Solid Polyelectrolytes for Light Weight Batteries
1013(1)
4.8 Other Applications
1014(1)
4.8.1 Surface Modification
1014(1)
4.8.2 Additives for Lubricants Manufacturing
1014(1)
4.8.3 Opacifier
1015(1)
4.8.4 Additives for Reinforcement of Materials
1015(1)
4.8.5 (Thin) Nanostructured Films
1015(1)
5 Conclusions
1016(21)
References
1017(20)
19 Statistical, Alternating, and Gradient Copolymers
1037(52)
Bert Klumperman
Rueben Pfukwa
Albena Lederer
1 Introduction
1037(1)
2 Copolymerization Models
1038(7)
2.1 Terminal Model
1038(2)
2.2 Penultimate Unit Model
1040(2)
2.3 Other Copolymerization Models
1042(1)
2.4 Model Discrimination
1043(2)
3 Statistical Copolymers
1045(7)
3.1 Homogeneous Versus Heterogeneous Copolymers
1046(3)
3.2 Reactivity Ratios
1049(1)
3.2.1 Experimental Determination
1049(2)
3.2.2 Theoretical Predictions
1051(1)
4 Sequence-Controlled Copolymers
1052(3)
4.1 Alternating Copolymers
1052(1)
4.2 Sequence-Controlled Copolymers Via RDRP
1053(2)
5 Solvent Effects
1055(1)
6 Gradient Copolymers
1055(5)
6.1 Reversible Deactivation Radical Copolymerization Versus Conventional Radical Copolymerization
1056(2)
6.2 The Early Stages of Gradient Copolymerization
1058(1)
6.3 Recent Developments in the Synthesis of Spontaneous Gradient Copolymers
1058(1)
6.4 Forced Composition Gradient Copolymers
1059(1)
7 Characterization of Copolymers
1060(12)
7.1 Application of Standard Analytical Techniques
1060(1)
7.1.1 Composition
1060(1)
7.1.2 Molar Mass
1061(2)
7.2 Specific Analytical Techniques for Copolymers
1063(1)
7.2.1 Molar Mass and Chemical Composition Distribution
1063(8)
7.3 Copolymers with Higher Dimension of Complexity
1071(1)
8 Properties and Applications
1072(8)
8.1 Properties
1072(1)
8.1.1 Solid Phase
1073(1)
8.1.2 Self-Assembly Due to Selective Solvation
1074(1)
8.2 Applications of Random, Alternating, and Gradient Copolymers
1074(1)
8.2.1 Random Copolymers
1074(3)
8.2.2 Alternating Copolymers
1077(1)
8.2.3 Gradient Copolymers
1078(2)
9 Conclusions
1080(9)
References
1081(8)
20 Synthetic Polymers with Finely Regulated Monomer Sequences: Properties and Emerging Applications
1089(34)
Eline Laurent
Roza Szweda
Jean-Francois Lutz
1 Introduction
1089(1)
2 Synthesis of Sequence-Controlled Polymers
1090(3)
3 Properties
1093(7)
3.1 Mechanical Properties
1093(1)
3.2 Optical and Electronic Properties
1094(1)
3.3 Biodegradation
1095(1)
3.4 Bulk Self-Assembly
1096(1)
3.5 Solution Self-Assembly
1097(1)
3.6 Single-Chain Folding
1098(2)
4 Applications
1100(12)
4.1 Data Storage
1100(3)
4.2 Anti-Counterfeiting Technologies
1103(1)
4.3 Catalysis
1104(3)
4.4 Drug Delivery
1107(2)
4.5 Antimicrobial Materials
1109(1)
4.6 Microelectronics and Photovoltaics
1110(1)
4.7 Composites and Blends
1110(2)
5 Outlook
1112(11)
References
1114(9)
21 Multi-Segmented Macromolecules of Linear and Grafted Topologies
1123(54)
Constantinos Tsitsilianis
1 Introduction
1123(1)
2 Joining Together Different Segments
1124(2)
3 Linear Multi-Segmented Block Copolymers
1126(22)
3.1 BAB Triblock Copolymers
1126(1)
3.1.1 Synthetic Strategies
1126(2)
3.1.2 Synthesis of ABA by Anionic Polymerization
1128(3)
3.1.3 Synthesis of ABA by Group Transfer Polymerization (GTP)
1131(1)
3.1.4 Synthesis of ABA by Cationic Living Polymerization
1131(2)
3.1.5 Synthesis of ABA by Controlled Free Radical Polymerization
1133(2)
3.1.6 Synthesis of ABA by Combination of Methods
1135(1)
3.1.7 Synthesis of ABA by Coupling Reactions
1136(1)
3.2 (AB)n Linear Multiblock Copolymers
1136(1)
3.3 ABC Triblock Terpolymers
1136(1)
3.3.1 Synthetic Strategies
1137(1)
3.3.2 Synthesis of ABC by Anionic Polymerization
1138(3)
3.3.3 Synthesis of ABC Terpolymers by GTP
1141(1)
3.3.4 Synthesis of ABC Terpolymers by Cationic Polymerization
1142(1)
3.3.5 Synthesis of ABC Terpolymers by Controlled Free Radical Polymerization
1143(1)
3.3.6 Synthesis of ABC Terpolymers by Combination of Methods
1144(1)
3.3.7 Synthesis of ABC by Coupling Reactions
1145(1)
3.4 Synthesis of ABCA Tetra- and ABCBA Penta-Block Terpolymers
1145(2)
3.5 Synthesis of ABCD Quaterpolymers
1147(1)
4 Block-Random Linear Multi-Segmented Macromolecules
1148(3)
4.1 Triblock Copolymers
1149(1)
4.2 Triblock Terpolymers
1149(2)
4.3 Triblock Quaterpolymers
1151(1)
5 Multi-Segmented Graft Copolymers
1151(17)
5.1 Synthetic Strategies
1152(2)
5.2 A-g-B Graft Copolymers
1154(4)
5.3 A-g-(B-co-C) Graft Terpolymers
1158(1)
5.4 A-g-(B-b-C) Block Graft Terpolymers
1158(1)
5.5 A-(g-B)-g-C Heterograft Terpolymers
1159(2)
5.6 Model Graft-Like Architectures
1161(7)
6 Concluding Remarks
1168(9)
Acknowledgment
1169(1)
References
1169(6)
Further Reading
1175(2)
22 Polymers with Star-Related Structures
1177(1)
Nikos Hadjichristidis
Marinos Pitsikalis
Panagiota G. Fragouli
Joannis Choinopoulos
Dimitra Stavroulaki
Varvara Athanasiou
Hermis Latrou
1 Introduction
1177(1)
2 General Methods for the Synthesis of Star Polymers
1178(2)
2.1 Multifunctional Linking Agents
1178(1)
2.2 Multifunctional Initiators
1179(1)
2.3 Difunctional Monomers
1179(1)
3 Star Architectures
1180(2)
3.1 Star-Block Copolymers
1180(1)
3.2 Functionalized Stars
1180(1)
3.3 Asymmetric Stars
1181(1)
3.4 Miktoarm Stars
1182(1)
4 Synthesis of Star Polymers
1182(61)
4.1 Anionic Polymerization
1182(15)
4.2 Cationic Polymerization
1197(5)
4.3 Controlled Radical Polymerization
1202(1)
4.3.1 Nitroxide-Mediated Polymerization
1202(4)
4.3.2 Atom Transfer Radical Polymerization (ATRP)
1206(7)
4.3.3 Reversible Addition Fragmentation Chain Transfer Polymerization (RAFT)
1213(4)
4.4 Ring-Opening Polymerization
1217(2)
4.5 Group-Transfer Polymerization (GTP)
1219(3)
4.6 Ring-Opening Metathesis Polymerization (ROMP)
1222(6)
4.7 Step-Growth Polycondensation
1228(3)
4.8 Metal Template-Assisted Star Polymer Synthesis
1231(4)
4.9 Combination of Different Polymerization Techniques
1235(8)
5 Conclusions
1243(1)
Abbreviations
1243(2)
References
1245(8)
23 Highly Branched Polymer Architectures: Specific Structural Features and Their Characterization
1253(1)
Susanne Boye
Albena Lederer
Brigitte Voit
1 Introduction
1253(1)
2 Highly Branched Polymer Architectures - A Brief Synthetic Outline
1254(1)
2.1 Highly Branched Polymers
1254(1)
2.1.1 Divinyl Monomer Copolymerization
1255(1)
2.1.2 Self-Condensing Vinyl Polymerization
1256(1)
2.2 Hyperbranched Polymers
1256(1)
2.2.1 Step Growth Polymerization of AB, Monomers
1256(1)
2.2.2 Step Growth Polymerization of A2 + Bm Monomers
1257(1)
2.3 Long Chain Hyperbranched Polymers
1257(1)
2.4 Dendrimers
1258(1)
2.5 Branched-Linear Hybrid Polymers
1259(1)
2.5.1 Branched-Linear Block Copolymers
1259(1)
2.5.2 Branched-Core Star Polymers
1260(1)
2.5.3 Dendronized Polymers
1260(1)
2.5.4 Dendritic Assemblies
1260(1)
3 Characterization of Highly Branched Polymers and Related Challenges
1261(20)
3.1 Determination of Structural Properties
1262(1)
3.2 Characterization of Bulk Properties
1263(1)
3.2.1 Glass Transition Temperature
1264(1)
3.2.2 Crystallization Behavior
1265(1)
3.3 Characterization of Highly Branched Polymers in Solution
1266(1)
3.3.1 Determination of Molar Mass and Size by Size Exclusion Chromatography
1266(1)
3.3.2 Relative Method for Determination of Molar Mass
1267(2)
3.3.3 Absolute Molar Mass Determination
1269(1)
3.3.4 Separation Coupled to Static Light Scattering Detection
1270(2)
3.3.5 Alternative Separation Techniques for Branched Polymers
1272(2)
3.3.6 Other Separation Techniques for Branched Polymers
1274(2)
3.3.7 Conformation Properties
1276(5)
4 Conclusions and Future Perspectives
1281(4)
References
1281(4)
24 Synthetic Strategies Towards Cyclic Polymers
1285(34)
Yu Jiang
Konstantinos Ntetsikas
George Polymeropoulos
George Zapsas
Xiaoshuang Feng
Yves Gnanou
Nikos Hadjichristidis
1 Introduction
1285(2)
2 Ring-Closure Strategy
1287(12)
2.1 Bimolecular Homodifunctional Coupling
1287(4)
2.2 Unimolecular Homodifunctional Coupling
1291(2)
2.3 Unimolecular Heterodifunctional Coupling
1293(5)
2.4 Cyclic Polypeptides
1298(1)
3 Ring-Expansion Strategy
1299(12)
3.1 Ring-Expansion Polymerization with Metal Alkoxides
1300(1)
3.2 Ring-Expansion Metathesis Polymerization
1301(2)
3.3 Zwitterionic Ring-Expansion Polymerization (ZROP)
1303(1)
3.3.1 Nucleophilic Zwitterionic Ring-Opening Polymerization (NZROP)
1303(3)
3.3.2 Electrophilic Zwitterionic Ring-Opening Polymerization (EZROP)
1306(1)
3.3.3 Lewis Pair-Mediated Zwitterionic Ring-Opening Polymerization
1307(2)
3.4 Other Ring-Expansion Polymerization Methods
1309(2)
4 Conclusion
1311(8)
References
1311(8)
25 Polymer Networks
1319(52)
Yuwei Gu
Julia Zhao
Jeremiah A. Johnson
1 Introduction
1319(2)
2 Mechanisms for Polymer Network Formation
1321(2)
3 Polymer Network Structure
1323(15)
3.1 General Features of Polymer Network Topology
1323(2)
3.2 Scattering Techniques for Probing Polymer Network Structure
1325(2)
3.3 Structural Control of Polymer Networks
1327(1)
3.3.1 Controlling Branch Functionality of Polymer Networks
1327(2)
3.3.2 Controlling Polymer Network Strand Topology
1329(3)
3.3.3 Controlling Loops of Various Orders in Polymer Networks
1332(1)
3.3.4 Controlled Radical Polymerization in Polymer Network Synthesis
1333(3)
3.3.5 Topology-switchable Networks
1336(2)
4 Basic Properties of Polymer Networks
1338(8)
4.1 Elasticity
1338(4)
4.2 Swelling of Polymer Networks
1342(1)
4.3 Viscoelasticity of Polymer Networks
1343(3)
5 Additional Examples of Polymer Networks with Unique Chemistry/Structure-Driven Properties
1346(14)
5.1 Covalent Adaptable Polymer Networks
1346(3)
5.2 Microporous Polymer Networks
1349(1)
5.2.1 Amorphous Microporous Polymer Networks
1350(3)
5.2.2 Crystalline Microporous Polymer Networks
1353(6)
5.3 Interpenetrating Polymer Networks
1359(1)
6 Summary and Outlook
1360(11)
Acknowledgments
1361(1)
References
1361(10)
26 Fluoropolymers for Automotive and Aerospace Industries
1371(32)
Fatima Ezzahra Bouharras
Mustapha Raihane
Gerald Lopez
Bruno Ameduri
1 Introduction
1371(1)
2 Synthesis
1372(8)
2.1 Conventional Co/Terpolymerization of Fluoroalkenes
1372(2)
2.2 Reversible Dissociation Radical Polymerization (RDRP)
1374(1)
2.2.1 Nitroxide-Mediated Polymerization (NMP)
1374(1)
2.2.2 Atom Transfer Radical Polymerization (ATRP)
1374(1)
2.2.3 Reversible Addition-Fragmentation Chain Transfer Polymerization (RAFT)
1374(1)
2.2.4 Iodine Transfer Polymerization (ITP)
1375(1)
2.2.5 Cobalt-Mediated Radical Polymerization (CMRP)
1376(1)
2.3 Curing
1376(1)
2.3.1 Ionic Curing
1376(1)
2.3.2 Peroxide Cure
1377(1)
2.4 Others: Composites With Fillers
1377(3)
3 Properties
1380(10)
3.1 Thermal Stability
1381(3)
3.2 Mechanical Properties
1384(2)
3.3 Chemical Stability
1386(3)
3.4 Surface Properties
1389(1)
4 Applications
1390(1)
5 The Aerospace Fluoropolymers Market
1391(1)
6 Focus on Fluoropolymers for Aeronautic Wires Insulation
1392(4)
7 Conclusion
1396(7)
List of Abbreviations
1397(1)
References
1398(5)
27 Structure and Phase Behavior of Polyampholytes and Polyzwitterions
1403(52)
Phillip D. Pickett
Yuanchi Ma
Nicholas D. Posey
Michael Lueckheide
Vivek M. Prabhu
1 Introduction
1403(4)
1.1 Motivating Applications
1403(3)
1.2 Fundamentals
1406(1)
2 Synthesis and Structure of pAs and pZIs
1407(5)
2.1 Synthetic Polyampholytes
1408(2)
2.2 Synthetic Polyzwitterions
1410(1)
2.3 Vinyl-Based Polyampholytes and Polyzwitterions
1410(2)
3 Structure-Dependent Solution Properties of pAs and pZIs
1412(29)
3.1 Physics of Polyampholyte Solution Behavior
1412(1)
3.1.1 Net Charges on Polyampholyte Chain Conformation
1413(3)
3.1.2 Charge Distribution on Polyampholyte Phase Diagram
1416(1)
3.1.3 Charge-Symmetric Block Polyampholytes
1416(7)
3.2 Physics of Polyzwitterion Solution Behavior
1423(2)
3.2.1 Salt Responsive Behavior
1425(8)
3.2.2 Structural Effects on Phase Behavior
1433(7)
3.2.3 Ph-Dependent Solution Behavior of Polycarboxybetaines
1440(1)
3.2 A Associations of Polyzwitterions with Polyelectrolytes
1441(1)
4 Outlook
1441(14)
Acknowledgments
1443(1)
References
1443(12)
Volume 4
List of Contributors
xxiii
Preface xliii
Part IV Structure-Properties and Characterization
1455(794)
28 Macromolecular Modeling
1457(40)
David S. Simmons
1 Why Model Polymers?
1457(1)
2 Target Properties
1458(4)
2.1 Thermodynamic Properties
1459(1)
2.2 Structure
1460(1)
2.3 Transport and Rheological Properties
1461(1)
2.4 Microscopic Dynamics
1462(1)
3 A Taxonomy of Polymer Modeling Approaches
1462(16)
3.1 Polymer Theoretical Frameworks
1464(1)
3.1.1 Perturbation Theory
1464(2)
3.1.2 Integral Equation Theory (IET)
1466(1)
3.1.3 Fluids Density Functional Theory (fDFT) and Self-Consistent Field Theory (SCFT)
1467(1)
3.1.4 Analytic Dynamical Theories
1468(2)
3.1.5 Molecular Monte Carlo (MC) Simulations
1470(1)
3.1.6 Dynamical Particle-based Computer Simulations
1471(1)
3.2 Polymer Molecular Models
1471(1)
3.2.1 Statistical Walk Models
1472(1)
3.2.2 Linear-chain Models with Excluded Volume
1473(3)
3.2.3 Chemically Structured Models
1476(2)
4 Molecular Dynamics Simulation of Polymers
1478(5)
4.1 Basic Concepts
1478(1)
4.2 Temperature and Pressure Control
1479(1)
4.3 Equilibrium
1480(3)
5 Hybrid Approaches
1483(5)
5.1 Hybrid Methods for Block Copolymer (BCP) Modeling
1483(1)
5.2 Hybrid Methods for Polymer Nanocomposites
1484(2)
5.3 Hybrid Methods Employing Optimization or Machine-learning Strategies
1486(2)
6 Conclusion and Outlook
1488(9)
Acknowledgments
1488(1)
References
1488(9)
29 Separation of Polymers by Chromatography
1497(40)
Taihyun Chang
1 Introduction
1497(1)
2 Principles for Chromatographic Separation of Polymers
1498(8)
3 Polymer Characterization by Chromatography Separation
1506(21)
3.1 MWD Characterization of Homo-Polymers
1506(2)
3.2 Separation by Functionality
1508(1)
3.3 Polymer Mixtures
1509(4)
3.4 Copolymers
1513(1)
3.4.1 Statistical Copolymers
1513(1)
3.4.2 Block Copolymers
1514(5)
3.5 Characterization of Branched Polymers
1519(4)
3.6 Separation by Microstructure
1523(2)
3.7 Separation of Ring Polymers from Linear Precursors
1525(2)
4 Concluding Remarks
1527(10)
References
1528(9)
30 NMR Spectroscopy
1537(1)
Hans W. Spiess
1 Introduction
1537(1)
2 NMR Background
1538(1)
2.1 Anisotropic Spin Interactions
1538(2)
2.2 Manipulation of Spin Interactions
1540(2)
2.3 Double-Quantum NMR
1542(1)
2.4 Two-dimensional NMR Spectroscopy
1543(2)
3 Applications
1545(1)
3.1 Chain Microstructure
1545(2)
3.2 Heterogeneous Polymer Melts
1547(1)
3.3 Micellar Aggregates from Block Copolymers
1547(2)
3.4 Elastomers
1549(1)
3.5 Melts Composed of Stiff Macromolecules
1550(2)
3.6 Conformational Memory in Poly(N-alkylmethacrylates)
1552(1)
3.7 Applications in Supramolecular Chemistry
1553(1)
3.7.1 Hydrogen Bonds in Supramolecular Polymers
1553(1)
3.7.2 Proton Conductors
1554(1)
3.7.3 Supramolecular Assembly of Dendritic Polymers
1554(2)
3.7.4 Discotic Photoconductors Based on Hexabenzocoronene (HBC)
1556(1)
3.7.5 Polyphenylene Dendrimers as Shape-Persistent Nanoparticles
1556(1)
3.7.6 Organic-Inorganic Hybrid Materials
1557(3)
4 Conclusion and Outlook
1560(2)
Acknowledgments
1562(1)
References
1562(5)
31 Scattering From Polymer Systems
1567(1)
Yimin Mao
Tianbo Liu
Benjamin Chu
1 Overview
1567(3)
2 General Principles
1570(1)
2.1 Origins of Light, X-Ray, and Neutron Scattering
1570(4)
2.2 Scattering Geometry, Momentum and Energy Conservation
1574(1)
2.3 Interference
1575(2)
2.4 Intra- and Inter-Particle Scattering
1577(2)
2.5 Time and Frequency Domains
1579(2)
2.6 Dynamic Light Scattering: Principles of Photon Correlation Spectroscopy
1581(2)
3 Applications
1583(1)
3.1 Static and Dynamic Light Scattering
1583(1)
3.1.1 Basic Polymer Characterizations
1583(3)
3.1.2 Structure and Dynamics on Polymer Chain Conformation
1586(2)
3.1.3 Self-Assembly of Surfactants/Block Copolymers into Supramolecular Structures
1588(1)
3.1.4 Investigation of Supramolecular Assemblies
1588(4)
3.1.5 Time-Resolved Studies for Understanding Kinetic Processes in Solution
1592(1)
3.2 Small-Angle X-Ray and Neutron Scattering
1593(1)
3.2.1 Polymer Chain Conformation
1593(1)
3.2.2 Investigation on Structures of Nanoparticles
1594(2)
3.2.3 Macro-Lattice
1596(1)
3.2.4 Two-Phase System
1597(2)
3.2.5 Semi-Dilute Solutions and Gels
1599(2)
4 Experimental Considerations
1601(16)
4.1 Choice of Method
1602(1)
4.1.1 Scattering Power and Scattering Contrast
1602(1)
4.1.2 Q-Range of Scattering Experiment
1603(1)
4.1.3 Amount of Samples Available
1603(1)
4.1.4 Is Kinetic Study Needed?
1603(1)
4.1.5 Radiation Damage
1604(1)
4.2 Sample Preparation
1604(1)
4.3 Sample Environment
1604(1)
4.4 Background Handling
1605(1)
4.5 Multiple Scattering
1606(1)
4.6 Absolute Intensity
1606(1)
References
1607(10)
32 Neutron Scattering in Polymers
1617(1)
Dieter Richter
Dietmar Schwahn
1 Introduction
1617(1)
2 Neutron Scattering Basics
1617(3)
2.1 Neutron Cross Section
1617(2)
2.2 Coherent and Incoherent Scattering
1619(1)
2.3 Coarse Graining and Generation of Contrast
1619(1)
3 Methods
1620(11)
3.1 Small-Angle Neutron Diffractometer
1620(1)
3.1.1 Pinhole SANS
1621(1)
3.1.2 Aspherical Refractive Lenses as Optical Elements for SANS
1622(1)
3.1.3 Toroidal Mirror Focusing SANS
1622(1)
3.1.4 Grazing Incidence Small-Angle Neutron Scattering (GISANS)
1623(3)
3.2 Quasielastic Scattering
1626(1)
3.2.1 Time of Flight Spectroscopy (TOF)
1626(1)
3.2.2 Backscattering
1626(1)
3.2.3 Neutron Spin Echo (NSE)
1627(4)
4 SANS Examples
1631(8)
4.1 Basic Example: Conformation of a Linear Homopolymer in the Bulk-Flory Model, Debye Function, Random Phase Approximation
1631(2)
4.1.1 Linear Polymers in a Melt
1633(1)
4.2 Time-Resolved (TR) SANS Measurements - Unimer Exchange Kinetic in Block Copolymer Micelles
1634(2)
4.3 Thin-Film Composite Membranes for Reverse Osmosis Desalination
1636(2)
4.4 GISANS: Structure of Bicontinuous Microemulsions Near Surfaces
1638(1)
5 Examples: Polymer Dynamics
1639(1)
5.1 Local Motion and the Glass Transition
1640(1)
5.2 Segmental Dynamics - Rouse Motion
1641(1)
5.3 Reptation and Its Limiting Processes
1642(3)
5.4 Polymers Under Confinement
1645(2)
5.5 One Component Nanocomposites
1647(2)
5.6 Supramolecular Chain and Association Dynamics
1649(2)
Acknowledgments
1651(1)
References
1651(4)
33 New Stuff in Old Places: Light Microscopy of Polymers
1655(1)
Mohan Srinivasarao
1 Introduction
1655(4)
2 Historical Tour of Light Microscopy
1659(1)
2.1 Historical Aspects of Microscopy
1659(3)
3 Background and Motivation
1662(2)
3.1 Image Formation in a Microscope and Resolution
1664(7)
3.2 Abbe's Diffraction Experiments Parts 1-5, by Peter Evennett, Dresden Imaging, Facility Network, 2001
1671(1)
3.3 How to Use a Microscope
1672(2)
4 Polarized Light Microscopy
1674(17)
4.1 Doubly Refracting Materials
1674(3)
4.2 The Case of Polymer Spherulites and Fibers
1677(3)
4.3 The Case of Liquid Crystals
1680(4)
4.3.1 Emergence of Chirality in Lyotropic Liquid Crystals
1684(4)
4.4 Conoscopy of Nematic Liquid Crystals
1688(1)
4.5 Optical Crystallography or Conoscopy
1688(3)
5 Laser Scanning Confocal Microscopy
1691(26)
5.1 Principles of Fluorescence
1691(4)
5.2 Confocal Principle: Scanning the Illumination and Detection
1695(1)
5.2.1 Effect of Contrast
1695(3)
5.2.2 Effect on Resolution
1698(1)
5.2.3 Discussion of Optical Sectioning
1699(1)
5.3 Applications of Confocal Microscopy in Polymer Science
1700(1)
5.3.1 Dye Diffusion in Polymeric Fibers
1700(6)
5.3.2 Structural Characteristics of Microstructured Polymer Films
1706(4)
5.3.3 Director Configuration in 3-Dimension: Fluorescence Confocal Polarizing Microscopy (FCPM)
1710(7)
6 Photon Tunneling Microscopy
1717(9)
6.1 Brief Description of PTM
1718(2)
6.2 Resolution in PTM
1720(3)
6.3 Study of Polymer Single Crystals
1723(3)
6.4 Diamond Turning
1726(1)
7 Fourier Plane Imaging
1726(4)
8 Concluding Remarks
1730(7)
Acknowledgments
1731(1)
References
1731(6)
34 Determination of Bulk and Solution Morphologies by Transmission Electron Microscopy
1737(42)
Volker Abetz
Hiroshi Jinnai
Richard J. Spontak
Yeshayahu Talmon
1 Introduction
1737(1)
2 Background of Electron Microscopy
1738(4)
3 Conventional TEM of Bulk Materials
1742(7)
3.1 Sectioning of Samples
1743(1)
3.2 Staining of Samples
1744(5)
4 Cryo-TEM and Freeze-Fracture TEM of Solutions
1749(1)
4.1 Direct-Imaging Cryo-TEM
1750(3)
4.2 Freeze-Fracture-Replication
1753(1)
4.3 Limitations, Precautions, Artefacts, and Extensions of the Technique
1754(6)
5 Transmission Electron Microtomography
1760(9)
5.1 Background
1760(1)
5.2 Methodology
1761(2)
5.3 Reconstruction Fidelity
1763(2)
5.4 Quantitative Analysis
1765(2)
5.5 Emerging Opportunities
1767(2)
6 Analytical Electron Microscopy
1769(10)
6.1 Energy-Dispersive X-Ray Mapping
1769(2)
6.2 Energy-Filtered Transmission Electron Microscopy
1771(1)
6.2.1 Zero-Loss Imaging
1771(1)
6.2.2 Structure-Sensitive Imaging
1772(1)
6.2.3 Element-Specific Imaging
1772(2)
Acknowledgments
1774(1)
References
1774(5)
35 Broadband Dielectric Spectroscopy and Its Application in Polymeric Materials
1779(40)
Ivan Popov
Shiwang Cheng
Alexei P. Sokolov
1 Introduction
1779(1)
2 Basics of Broadband Dielectric Spectroscopy
1780(6)
3 Dielectric Relaxation in Polymers
1786(13)
3.1 Dielectric Spectra of Segmental Dynamics
1787(2)
3.2 Dielectric Spectra of Chain Dynamics
1789(3)
3.3 Secondary Relaxations
1792(2)
3.4 Nonpolymer Relaxation Modes at Low Frequencies
1794(2)
3.5 Special Cases
1796(1)
3.5.1 Thin Polymer Films
1796(2)
3.5.2 Semi-Crystalline Polymers
1798(1)
4 BDS in Multicomponent Polymeric Materials
1799(4)
5 Broadband Dielectric Spectroscopy in Ionic Conductive Systems
1803(6)
6 Conclusions
1809(10)
Acknowledgments
1810(1)
References
1810(9)
36 Macromolecular Rheology
1819(1)
Evelyne van Ruymbeke
Dimitris Vlassopoulos
1 Introduction
1819(1)
2 Basic Elements of Rheological Measurements
1820(4)
3 Linear Viscoelastic Measurements
1824(6)
4 Linear Viscoelasticity and Influence of Molecular Architecture
1830(26)
4.1 Linear Viscoelastic Properties of Linear Polymers
1831(1)
4.1.1 Unentangled Linear Polymers
1831(2)
4.1.2 Entangled Linear Polymers
1833(11)
4.2 Linear Viscoelastic Properties of Star Polymers
1844(1)
4.2.1 Relaxation of a Star Polymer
1845(4)
4.3 Linear Viscoelastic Properties of Branched Polymers
1849(1)
4.3.1 Relaxation of the Inner Generations of Branches
1849(3)
4.3.2 Constraint Release in Branched Polymers
1852(1)
4.3.3 Influence of Molecular Characteristics of Branched Polymers on Their Dynamics
1852(4)
5 Nonlinear Viscoelasticity
1856(9)
5.1 Nonlinear Shear Rheology
1857(1)
5.1.1 Shear Thinning of Linear and Branched Polymers: Steady-State Predictions and Measurements
1857(2)
5.1.2 Transient Nonlinear Response of Linear and Branched Polymers
1859(1)
5.2 Nonlinear Extensional Rheology
1860(1)
5.2.1 Monodisperse Linear Polymers
1860(1)
5.2.2 Polydisperse Linear Polymers
1861(1)
5.2.3 Branched Architectures
1861(4)
6 Applications of Industrial Relevance
1865(1)
6.1 Controlling Flow Properties in Industrial Processes
1865(1)
6.2 Rheology as a Characterization Tool
1865(1)
6.2.1 Detection of Long-Chain Branching
1865(1)
6.2.2 Inverse Problem: From Rheology to Polymer Composition
1866(1)
7 Summary
1867(8)
References
1867(8)
37 Rheology of Unentangled Polymer Solutions Depends on Three Macromolecular Properties: Flexibility, Extensibility, and Segmental Dissymmetry
1875(1)
Jelena Dinic
Carina D. V. Martinez Narvdez
Vivek Sharma
1 Introduction
1875(4)
2 Background and Definitions: Polymer Physics, Pinching Dynamics, and Rheology
1879(9)
2.1 Shear and Extensional Rheology: Basic Concepts and Methods
1879(2)
2.2 Capillarity-driven Pinching Dynamics
1881(3)
2.3 Polymer Dynamics in Unentangled Solutions: Rouse, Zimm, and Rouse-Zimm Chains
1884(2)
2.4 Macromolecular Flexibility, Extensibility, and Segmental Dissymmetry
1886(2)
3 Influence of Three Macromolecular Properties on Rheological Response
1888(12)
3.1 Contrasting Steady Shear Viscosity Measurements for Aqueous HEC and PEO Solutions
1888(2)
3.2 Pinching Dynamics of Unentangled Semi-Dilute PEO Solutions
1890(2)
3.3 Contrasting Radius Evolution Data for Unentangled HEC and PEO Solutions
1892(4)
3.4 Transient Extensional Viscosity of Aqueous HEC Solutions Measured Using DoS Rheometry
1896(2)
3.5 Concentration-Dependent Extensional Relaxation Times
1898(1)
3.6 Segmental Dissymmetry and Stretched Overlap Concentration
1899(1)
4 Conclusions
1900(77)
Acknowledgments
1902(1)
References
1902(9)
38 Macromolecular Engineering via Polyelectrolyte Complexation
1911(1)
Siqi Meng
Matthew V. Tirrell
1 Introduction to Polyelectrolyte Complexation
1911(1)
1.1 General Introduction
1911(1)
1.2 Factors Influencing Polyelectrolyte Complexation Behavior
1911(5)
1.3 Emerging Applications of Polyelectrolyte Complexes
1916(1)
2 Recent Advances in the Research of Polyelectrolyte Complexation
1916(1)
2.1 Phase Behavior of Polyelectrolyte Complexes
1916(3)
2.2 Structural Analysis in Polyelectrolyte Complexes
1919(1)
2.3 Dynamics of Polyelectrolyte Complexes
1920(4)
2.4 Effect of Water on the Physical Behaviors of Polyelectrolyte Complexes
1924(2)
2.5 Solid-Liquid Transition in Polyelectrolyte Complexes
1926(5)
3 Conclusion and Outlook
1931(6)
References
1931(5)
Further Readings
1936(1)
39 Time-programming, Clocking, and Self-oscillating Polymer Gels
1937(1)
Ryo Yoshida
1 Introduction
1937(1)
2 Design of Self-oscillating Polymer Gel
1938(3)
2.1 Oscillating Chemical Reaction
1938(1)
2.2 Mechanism of Self-oscillating Gels
1939(1)
2.3 Self-oscillating Behaviors on Several Scales
1939(2)
3 Control of Self-oscillating Chemomechanical Behaviors
1941(3)
3.1 Concentration and Temperature Dependence of Oscillation
1941(1)
3.2 On-Off Regulation of Self-oscillation by External Stimuli
1942(1)
3.3 Control of Self-oscillating Behaviors by Designing the Chemical Structure of the Gel
1942(1)
3.4 Remarkable Swelling-Deswelling Changes by Assembled Self-oscillating Microgels
1943(1)
3.5 Comb-Type Self-oscillating Gel
1943(1)
4 Design of Biomimetic Soft-actuators
1944(1)
4.1 Ciliary Motion Actuator Using Self-oscillating Gel
1944(1)
4.2 Self-walking Gel
1944(1)
4.3 Self-propelled Motion
1944(1)
4.4 Theoretical Simulation of the Self-oscillating Gel
1945(1)
5 Design of Autonomous Mass Transport Systems
1945(2)
5.1 Self-Driven Gel Conveyer: Autonomous Transportation on the Self-oscillating Gel Surface by Peristaltic Motion
1945(1)
5.2 Autonomous Intestine-Like Motion of Tubular Self-oscillating Gel
1946(1)
6 Preparation of Self-oscillating Polymer Brushes (Artificial Cilia)
1947(3)
7 Polymer Solution Systems Toward Autonomous Soft Machines
1950(1)
7.1 Transmittance and Viscosity Oscillation of Polymer Solution and Microgel Dispersion
1950(1)
7.2 Self-oscillating Block Copolymers
1950(1)
7.3 Self-oscillating Vesicles
1951(2)
7.4 Cross-Linked Polymersomes Showing Self-Beating Motion
1953(2)
7.5 Self-oscillating Colloidosomes
1955(1)
7.6 Viscosity Oscillations of Self-oscillating Multiblock Copolymers
1956(1)
7.7 Amoeba-Like Self-oscillating Polymeric Fluids with Autonomous Sol-gel Transition
1957(4)
8 Concluding Remarks
1961(4)
References
1961(4)
40 Polymer Glasses
1965(22)
Connie B. Roth
1 Glass Transition by Kinetic Arrest
1965(3)
2 Microscopic Molecular Picture of the Glass Transition
1968(5)
3 Measurement Implications of Glasses Being a Nonequilibrium State
1973(6)
3.1 Considerations When Measuring the Glass Transition
1974(2)
3.2 Physical Aging: Stability of the Glassy State
1976(3)
4 Theoretical Concepts Used to Understand Glasses
1979(4)
5 Current Areas of Research in Polymer Glasses
1983(4)
Acknowledgment
1983(1)
References
1984(2)
Further Readings
1986(1)
41 Spectral Shift in the Hydrogen Bonding Peak to Quantify Interfacial Interactions at Polymer/Solid Interfaces
1987(38)
Saranshu Singh
Ali Dhinojwala
1 Introduction
1987(2)
2 Two Approaches to Determine the Enthalpy of Acid-Base Interactions
1989(1)
3 Brief Introduction of SFG
1990(1)
4 SFG Frequency Shifts - A Direct Measure of Interaction Strength
1991(4)
5 Use of SFG Spectroscopic Shifts to Understand Polymer Interactions
1995(6)
5.1 Thin Homopolymer Films
1995(1)
5.2 Polymer Adsorption
1996(3)
5.3 Polymer Blends
1999(2)
6 Use of Spectroscopic Shifts to Predict Durability of Polymer Coatings
2001(4)
6.1 Effect of Liquid and Vapor Water on Polyurethane Coatings
2001(2)
6.2 Effect of Liquid Water on Plasma Polymerized Coatings
2003(2)
7 Use of Spectroscopic Shifts for Understanding Adhesion
2005(7)
7.1 Adhesion of Rubber in Presence of Water
2005(1)
7.2 Adhesion of Bio-Inspired and Biological Glues
2006(1)
7.2.1 Adhesion of Mussel-Inspired Biopolymers
2006(3)
7.2.2 Adhesion of Spider Glue
2009(3)
8 Summary and Future Directions
2012(13)
References
2012(13)
42 Nanoparticle Transport through Polymers and Along Interfaces
2025(62)
Michael J. Boyle
Shawn M. Maguire
Katie A. Rose
Daeyeon Lee
Russell J. Composto
1 Introduction
2015(2)
2 Methods
2017(6)
2.1 Ensemble Averaged Techniques
2018(1)
2.2 Particle Tracking Techniques
2018(3)
2.3 Depth Profiling Techniques
2021(1)
2.4 Measuring Interactions between Nanoparticles and Local Environment
2021(1)
2.5 Future Directions
2022(1)
3 Bulk Diffusion of Nanoparticles
2023(26)
3.1 Stokes-Einstein Diffusion
2023(2)
3.2 Nanoparticle Diffusion in Polymer Melts
2025(4)
3.2.1 Nanoparticle Diffusion in Attractive Polymer Melts
2029(1)
3.2.2 Role of Grafted Brushes on Nanoparticle Dynamics
2030(5)
3.3 Nanoparticle Diffusion in Polymer Solutions
2035(5)
3.4 Nanoparticle Diffusion in Polymer Hydrogels
2040(1)
3.4.1 Mesh Size of Hydrogels
2040(2)
3.4.2 Probe Dynamics in Hydrogels
2042(4)
3.4.3 Effect of Network Inhomogeneities on Nanoparticle Dynamics
2046(1)
3.4.4 Effect of Probe-Network Interactions on Dynamics
2047(1)
3.4.5 Future Directions
2048(1)
4 Interfacial Nanoparticle Transport
2049(38)
4.1 Nanoparticle Interaction Mechanisms
2049(1)
4.1.1 Van der Waals Interactions
2050(2)
4.1.2 Electrostatics - The Electric Double Layer (EDL)
2052(3)
4.1.3 Van der Waals and Electrostatic Forces Combined - DLVO Theory
2055
Krzysztof Matyjaszewski is currently J.C. Warner University Professor of Natural Sciences at Carnegie Mellon University in Pittsburgh, USA. He is also Director of Center for Macromolecular Engineering at CMU and adjunct professor at University of Pittsburgh and at Polish Academy of Sciences.

Yves Gnanou is Professor in the Physical Science and Engineering Division of the King Abdullah University of Science and Technology (KAUST). His research interests focus on the study of the mechanism of chain polymerizations and the design of miscellaneous polymeric architectures by novel synthetic methods.

Nikolas Hadjichristidis is Professor at the Polymer Synthesis Laboratory of the King Abdullah University of Science and Technology (KAUST). He focuses on the synthesis of well-defined polymeric materials with complex macromolecular architecture (star, comb, cyclic, dendritic) by using anionic polymerization (AP) high vacuum techniques, as well as combinations of different polymerization methodologies (AP, ATRP, TEMPO, catalytic).

Murugappan Muthukumar is Wilmer D. Barrett Professor of Polymer Science and Engineering at the University of Massachusetts. His research group is engaged in understanding how macromolecules, both biological and synthetic, assume their sizes and shapes, organize into assemblies, and move around in crowded environments.