Atjaunināt sīkdatņu piekrišanu

E-grāmata: Magnetic Resonance Brain Imaging: Modelling and Data Analysis Using R

  • Formāts: EPUB+DRM
  • Sērija : Use R!
  • Izdošanas datums: 11-Oct-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031389498
  • Formāts - EPUB+DRM
  • Cena: 106,47 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: EPUB+DRM
  • Sērija : Use R!
  • Izdošanas datums: 11-Oct-2023
  • Izdevniecība: Springer International Publishing AG
  • Valoda: eng
  • ISBN-13: 9783031389498

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book discusses modelling and analysis of Magnetic Resonance Imaging (MRI) data of the human brain. For the data processing pipelines we rely on R, the software environment for statistical computing and graphics. The book is intended for readers from two communities: Statisticians, who are interested in neuroimaging and look for an introduction to the acquired data and typical scientific problems in the field and neuroimaging students, who want to learn about the statistical modeling and analysis of MRI data. Being a practical introduction, the book focuses on those problems in data analysis for which implementations within R are available. By providing full worked-out examples the book thus serves as a tutorial for MRI analysis with R, from which the reader can derive its own data processing scripts.

The book starts with a short introduction into MRI. The next chapter considers the process of reading and writing common neuroimaging data formats to and from the R session. The main chapters then cover four common MR imaging modalities and their data modeling and analysis problems: functional MRI, diffusion MRI, Multi-Parameter Mapping and Inversion Recovery MRI. The book concludes with extended Appendices on details of the utilize non-parametric statistics and on resources for R and MRI data.

The book also addresses the issues of reproducibility and topics like data organization and description, open data and open science. It completely relies on a dynamic report generation with knitr: The books R-code and intermediate results are available for reproducibility of the examples.
- 1. Introduction. - 2. Magnetic Resonance Imaging in a Nutshell. -
3. Medical Imaging Data Formats. - 4. Functional Magnetic Resonance Imaging.
- 5. Diffusion-Weighted Imaging. - 6. Multiparameter Mapping. - 7. Inversion
Recovery Magnetic Resonance Imaging.
Jörg Polzehl has retired in 2022 after 25 years as research associate at the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin, Germany. He holds a PhD in mathematics from Humboldt University Berlin. His main research interests are in computational and nonparametric statistics, with a focus on statistical modeling and data analysis in medical imaging. He has been elected as a Fellow of the Institute of Mathematical Statistics (IMS) and has been a longtime member of the American Statistical Association (ASA) and the Organization of Human Brain Mapping (OHBM).Karsten Tabelow is a (particle) physisist by training who currently works as a data scientist at the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) in Berlin, Germany. He is interested in Magnetic Resonance Imaging data of the human brain and considers data modeling and analysis problems with a focus on structural adaptive smoothing methods and biophysical models. He is also interested in reconstruction problems from physics-based imaging modalities. He is a member of the OHBM.  Finally, he contributes to the discussion on Open Science and Research Data Handling especially within mathematics. Within the Mathematical Research Data Initiative (MaRDI) with the German National Research Data Infrastructure (NFDI) he is one of the strategic developers of the consortium and a leader of the MaRDI working group at WIAS.





Both authors have jointly coauthored several R packages for the analysis of Magnetic Resonance Imaging data.