Atjaunināt sīkdatņu piekrišanu

E-grāmata: Magnetic Resonance Image Reconstruction: Theory, Methods, and Applications

Edited by (McGill University, USA), Edited by (Senior Scientist, Philips Research, Germany), Edited by (Reader, School of Biomedical Engineering and Imaging Sciences, UK)
Citas grāmatas par šo tēmu:
  • Formāts - EPUB+DRM
  • Cena: 131,42 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI.
  • Explains the underlying principles of MRI reconstruction, along with the latest research
  • Gives example codes for some of the methods presented
  • Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction
PART 1 Basics of MRI Reconstruction
1. Brief introduction to MRI physics
2. MRI reconstruction as an inverse problem
3. Optimization algorithms for MR reconstruction
4. Non-Cartesian MRI reconstruction
5. Early” constrained reconstruction methods

PART 2 Reconstruction of undersampled MRI data
6. Parallel imaging
7. Simultaneous multislice reconstruction
8. Sparse reconstruction
9. Low-rank matrix and tensorbased reconstruction
10. Dictionary, structured low-rank, and manifold learning-based
reconstruction
11. Machine learning for MRI reconstruction

PART 3 Reconstruction methods for nonlinear forward models in MRI
12. Imaging in the presence of magnetic field inhomogeneities
13. Motion-corrected reconstruction
14. Chemical shift encoding-based water-fat separation
15. Model-based parametric mapping reconstruction
16. Quantitative susceptibility-mapping reconstruction

APPENDIX A Linear algebra primer
Mehmet Akēakaya was born in Istanbul, Turkey. He went to Robert College for high school, moved to Montreal for undergraduate studies at McGill University, where he graduated with great distinction and Charles Michael Morssen Gold Medal. He got his PhD degree in May 2010 under the supervision of Professor Vahid Tarokh in the School of Engineering and Applied Sciences (SEAS), Harvard University.He was a post-doctoral fellow at BIDMC CMR Center between 2010-12, and an Instructor in Medicine at Harvard Medical School between 2012-15. Mariya Doneva is a senior scientist at Philips Research, Hamburg, Germany. She received her BSc and MSc degrees in Physics from the University of Oldenburg in 2006 and 2007, respectively and her PhD degree in Physics from the University of Luebeck in 2010. She was a Research Associate at Electrical Engineering and Computer Sciences department at UC Berkeley between 2015 and 2016. She is a recipient of the Junior Fellow award of the International Society for Magnetic Resonance in Medicine. Her research interests include methods for efficient data acquisition, image reconstruction and quantitative parameter mapping in the context of magnetic resonance imaging. Dr Claudia Prieto is a Reader in the School of Biomedical Engineering & Imaging Sciences