Atjaunināt sīkdatņu piekrišanu

E-grāmata: Magnetoelectric Composites

  • Formāts: 296 pages
  • Izdošanas datums: 22-Feb-2019
  • Izdevniecība: Pan Stanford Publishing Pte Ltd
  • Valoda: eng
  • ISBN-13: 9780429949616
  • Formāts - PDF+DRM
  • Cena: 130,74 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Bibliotēkām
  • Formāts: 296 pages
  • Izdošanas datums: 22-Feb-2019
  • Izdevniecība: Pan Stanford Publishing Pte Ltd
  • Valoda: eng
  • ISBN-13: 9780429949616

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This book is dedicated to modeling and application of magnetoelectric (ME) effect in layered and bulk composites based on magnetostrictive and piezoelectric materials. Currently, a huge literature is available on theoretical and experimental studies of ME composites but much less on the development and research of instruments based on them. It is important to note that so far only investigation of ME magnetic field sensors has been cited in the existing literature. However, these studies have finally resulted in the creation of low-frequency ME magnetic field sensors with parameters substantially exceeding the characteristics of Hall sensors.

The book presents the authors’ many years of experience, gained while studying ME composites and creating device models based on their studies. It describes low-frequency ME devices, such as current and position sensors and energy harvesters, and microwave ME devices, such as antennas, attenuators, filters, gyrators, and phase shifters.

Foreword ix
Preface xi
1 Modeling of Magnetoelectric Composites
1(150)
1.1 Low-Frequency Range
13(55)
1.1.1 Symmetric Layered Structures
14(4)
1.1.2 Bilayer Structure
18(1)
1.1.3 Examples of Multilayer Structures
19(8)
1.1.4 Bulk Composites
27(5)
1.1.5 Magnetoelectric Effects in Compositionally Graded Layered Structures
32(6)
1.1.6 Magnetoelectric Effect at Zero Bias Field
38(6)
1.1.7 Magnetoelectric Effect in Dimensionally Graded Laminate Composites
44(10)
1.1.8 Maxwell--Wagner Relaxation in ME Composites
54(2)
1.1.8.1 Layered composites
56(6)
1.1.8.2 Bulk composites
62(6)
1.2 Electromechanical Resonance Range
68(17)
1.2.1 Longitudinal and Radial Modes
68(5)
1.2.2 Disc-Shaped Bilayer
73(5)
1.2.3 Bending Modes
78(4)
1.2.4 Shear Vibrations
82(3)
1.3 Ferromagnetic Resonance Range
85(22)
1.3.1 Bilayer Structure
86(4)
1.3.2 Basic Theory: Macroscopic Homogeneous Model
90(3)
1.3.3 Uniaxial Structure
93(4)
1.3.4 Layered Composite with Single-Crystal Components
97(4)
1.3.5 Electric Field-Induced Broadening of Magnetic Resonance Line
101(4)
1.3.6 Resonance Line Shift by Electric Signal with Electromechanical Resonance Frequency
105(2)
1.4 Magnetoacoustic Resonance Range
107(14)
1.4.1 Direct Magnetoelectric Effect
108(3)
1.4.2 Effects of Exchange Interactions on Magnetoacoustic Resonance
111(4)
1.4.3 Electric Field-Induced Magnetic Excitations
115(6)
1.5 Nomograph Method for Predicting Magnetoelectric Coupling
121(18)
1.5.1 Low-Frequency Magnetoelectric Coupling
121(7)
1.5.2 Magnetoelectric Coupling at Bending Mode
128(4)
1.5.3 Magnetoelectric Coupling at Axial Mode
132(2)
1.5.4 Magnetoelectric Coupling in FMR Region
134(5)
1.6 Conclusions
139(12)
2 Applications of Magnetoelectric Composites
151(124)
2.1 ME Inductance
151(9)
2.1.1 Theoretical Model of the Device
152(5)
2.1.2 Comparison of Theoretical and Experimental Data
157(3)
2.2 ME Sensors
160(34)
2.2.1 Magnetic Field Sensor
161(1)
2.2.1.1 Principle of operation
162(1)
2.2.1.2 Equivalent circuit
163(2)
2.2.1.3 Design
165(3)
2.2.1.4 Discussions
168(2)
2.2.2 Current Sensor
170(1)
2.2.2.1 Nonresonant current sensor
171(8)
2.2.2.2 Resonant current sensor
179(7)
2.2.3 Crankshaft Position Sensor
186(1)
2.2.3.1 Principle of operation
187(1)
2.2.3.2 Design
188(5)
2.2.3.3 Discussions
193(1)
2.3 ME Harvesters
194(21)
2.3.1 ME Elements Design
195(1)
2.3.2 Measurement Stand
196(1)
2.3.3 Measurement Data
197(4)
2.3.4 Theoretical Approach
201(3)
2.3.5 Generator
204(1)
2.3.5.1 Design
204(2)
2.3.5.2 Prototype of generator
206(2)
2.3.5.3 Measuring stand
208(1)
2.3.5.4 Characteristics of ME element
209(2)
2.3.5.5 Characteristics of generator
211(2)
2.3.5.6 Configuration of the magnetic field generator
213(1)
2.3.5.7 Calculation of ME coefficient
214(1)
2.3.5.8 Outlook for increasing output power of the ME generator
215(1)
2.4 ME Microwave Resonators
215(26)
2.4.1 ME Microwave Devices
219(1)
2.4.2 Magnetoelectric Band-Pass Filter
220(1)
2.4.2.1 Characteristics
220(2)
2.4.2.2 Filter design
222(1)
2.4.2.3 Results
223(2)
2.4.3 Magnetoelectric Phase Shifter
225(1)
2.4.3.1 Experiment
226(2)
2.4.3.2 Results
228(1)
2.4.4 Magnetoelectric Microwave Isolator-Attenuator
229(2)
2.4.4.1 Results and discussion
231(3)
2.4.5 Modeling of ME Microwave Devices
234(4)
2.4.5.1 Results and discussion
238(3)
2.5 ME Gyrator
241(6)
2.5.1 Gyrator's Element Design
242(3)
2.5.2 Measurement Data
245(2)
2.6 ME Microwave Antenna Array
247(11)
2.6.1 Modeling and Results
249(9)
2.7 ME Microwave Modules and Radars
258(7)
2.7.1 Basic Element Design
258(4)
2.7.2 Microwave Magnetoelectric Module
262(3)
2.8 Conclusions
265(10)
Index 275
Mirza I. Bichurin is professor in and head of the Department of Design and Technology of Radioelectronic Equipment at Yaroslav-the-Wise Novgorod State University (NovSU), Russia.