Atjaunināt sīkdatņu piekrišanu

E-grāmata: Magnetotelluric Method: Theory and Practice

Edited by (Dublin Institute for Advanced Studies), Edited by (Woods Hole Oceanographic Institution, Massachusetts)
  • Formāts: PDF+DRM
  • Izdošanas datums: 26-Apr-2012
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781139368384
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 80,89 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 26-Apr-2012
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781139368384
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. This book forms the first comprehensive overview of magnetotellurics from the salient physics and its mathematical representation, to practical implementation in the field, data processing, modeling and geological interpretation. Electromagnetic induction in 1-D, 2-D and 3-D media is explored, building from first principles, and with thorough coverage of the practical techniques of time series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys. This book provides a rigorous introduction to magnetotellurics for academic researchers and advanced students and will be of interest to industrial practitioners and geoscientists wanting to incorporate rock conductivity into their interpretations"--

"The Magnetotelluric Method Theory and Practice The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. It is increasingly used in geological applications and the petroleum industry. This book forms the first comprehensive overview of magnetotellurics from the salient physics and its mathematical representation, to practical implementation in the field, data processing, modeling, andgeological interpretation"--

The magnetotelluric method is a technique for imaging the electrical conductivity and structure of the Earth, from the near surface down to the 410 km transition zone and beyond. This book forms the first comprehensive overview of magnetotellurics from the salient physics and its mathematical representation, to practical implementation in the field, data processing, modeling and geological interpretation. Electromagnetic induction in 1-D, 2-D and 3-D media is explored, building from first principles, and with thorough coverage of the practical techniques of time series processing, distortion, numerical modeling and inversion. The fundamental principles are illustrated with a series of case histories describing geological applications. Technical issues, instrumentation and field practices are described for both land and marine surveys. This book provides a rigorous introduction to magnetotellurics for academic researchers and advanced students and will be of interest to industrial practitioners and geoscientists wanting to incorporate rock conductivity into their interpretations.

Papildus informācija

A rigorous introduction to magnetotelluric imaging of Earth's electrical conductivity and structure, for researchers, advanced students and industrial practitioners.
Preface xv
List of contributors
xviii
1 Introduction to the magnetotelluric method
1(18)
Alan D. Chave
Alan G. Jones
1.1 Introduction
1(3)
1.2 A quick tour of magnetotellurics
4(3)
1.3 Historical perspective
7(3)
1.4 Commercial use of magnetotellurics
10(2)
1.5 The future of magnetotellurics
12(1)
1.6 More information on magnetotellurics
13(1)
1.7 Epilogue
14(5)
References
14(5)
2 The theoretical basis for electromagnetic induction
19(31)
Alan D. Chave
Peter Weidelt
2.1 The Maxwell equations
19(1)
2.2 Motional electromagnetic induction
20(5)
2.3 Electromagnetic induction by extrinsic sources
25(1)
2.4 The one-dimensional approximation
26(11)
2.4.1 Modal solutions for the pre-Maxwell equations
26(3)
2.4.2 Green's functions
29(3)
2.4.3 The poloidal magnetic (PM) mode
32(4)
2.4.4 The toroidal magnetic (TM) mode
36(1)
2.5 The two-dimensional approximation
37(5)
2.5.1 The Maxwell equations in a two-dimensional medium
37(3)
2.5.2 Inductive/galvanic coupling and the role of electric charge
40(1)
2.5.3 Transverse magnetic mode: the electric field in the air half-space
41(1)
2.6 Three-dimensional electromagnetic induction
42(8)
2.6.1 The Maxwell equations for three-dimensional media
42(2)
2.6.2 The role of anisotropy
44(3)
References
47(3)
3 Earth's electromagnetic environment
50(1)
Rob L. Evans
3A Conductivity of Earth materials
50(46)
3A.1 Introduction
50(2)
3A.2 Conductivity mechanisms: electronic and semiconduction
52(4)
3A.2.1 Electronic conduction
53(1)
3A.2.2 Semiconduction: mantle conductivity
54(2)
3A.3 Multiple phases and fluids
56(7)
3A.3.1 Aqueous fluids
57(3)
3A.3.2 Silicate melts
60(1)
3A.3.3 Carbonatite melts
60(1)
3A.3.4 Sulfidic melts
60(1)
3A.3.5 Mixing relationships and interconnectivity
61(2)
3A.4 Conductivity structure beneath the oceans
63(9)
3A.4.1 Oceanic crust and sediments
64(1)
3A.4.2 Compaction and diagenesis
65(1)
3A.4.3 Basaltic crust
65(1)
3A.4.4 Clays and surface conduction
66(1)
3A.4.5 Oceanic mantle
67(4)
3A.4.6 Serpentinization
71(1)
3A.5 Continents
72(7)
3A.5.1 Continental crust
72(5)
3A.5.2 Continental lithospheric mantle
77(2)
3A.6 Anisotropy
79(2)
3A.7 Comments on permeability and conductivity
81(1)
3A.8 Summary
82(14)
References
83(13)
3B Description of the magnetospheric/ionospheric sources
96(449)
Ari Viljanen
3B.1 Overview of interaction of Earth with solar wind
96(3)
3B.1.1 Major regions
96(1)
3B.1.2 Key physical concepts
97(2)
3B.2 General description of Earth's external field sources
99(10)
3B.2.1 Observation of external current systems
99(1)
3B.2.2 Magnetic storms; Dst and the ring current
100(1)
3B.2.3 Polar substorms; auroral electrojet; field-aligned currents
101(4)
3B.2.4 Sq and ionospheric tides; equatorial electrojet
105(1)
3B.2.5 Hydromagnetic waves; Pc disturbances
106(1)
3B.2.6 Change of mode at about 1 Hz and dead band; Schumann resonances; lightning
107(1)
3B.2.7 Audiomagnetotelluric sources to 10 kHz
108(1)
3B.2.8 Annual and solar cycle variations of geomagnetic activity
108(1)
3B.3 Description of the variation of source field characteristics
109(13)
3B.3.1 Separation of external and internal contributions
109(1)
3B.3.2 Spatial characteristics
110(1)
3B.3.3 Spectral characteristics
110(1)
3B.3.4 Consequences for the magnetotelluric method
111(5)
References
116(6)
4 The magnetotelluric response function
122(43)
Peter Weidelt
Alan D. Chave
4.1 General concepts
122(17)
4.1.1 Quasi-uniform source fields
122(2)
4.1.2 Tensor relation between the electric and magnetic fields
124(2)
4.1.3 Magnetic transfer functions
126(1)
4.1.4 Rotational invariants
127(3)
4.1.5 Electric field distortion: first encounter
130(4)
4.1.6 The phase tensor
134(5)
4.2 Properties of the magnetotelluric response function in one dimension
139(16)
4.2.1 Definitions
139(1)
4.2.2 Analytical properties in the complex frequency plane
140(1)
4.2.3 Existence conditions for a set of discrete frequencies
141(3)
4.2.4 Dispersion relations
144(2)
4.2.5 Simple approximate mappings of the true resistivity
146(3)
4.2.6 Interpretation of a(λ) in terms of thin sheets: the D+ model
149(5)
4.2.7 The rho+model
154(1)
4.3 Properties of the magnetotelluric response function in two dimensions
155(5)
4.4 Properties of the magnetotelluric response function in three dimensions
160(5)
References
162(3)
5 Estimation of the magnetotelluric response function
165(138)
Alan D. Chave
5.1 The statistical problem
165(5)
5.2 Discourse on spectral analysis in magnetotellurics
170(2)
5.3 Data assessment
172(7)
5.4 The remote reference method
179(5)
5.5 Robust magnetotelluric processing 1: M-estimators
184(8)
5.6 Robust magnetotelluric processing 2: bounded influence estimators
192(6)
5.7 Preprocessing
198(3)
5.8 Statistical verification
201(4)
5.9 Uncertainty estimates for the magnetotelluric response
205(7)
5.10 Alternative magnetotelluric processing methods
212(7)
References
215(4)
6 Distortion of magnetotelluric data: its identification and removal
219(1)
Alan G. Jones
6.1 Introduction
219(3)
6.2 Theoretical considerations
222(7)
6.2.1 General
222(2)
6.2.2 Groom-Bailey distortion decomposition
224(5)
6.3 Brief historical review
229(8)
6.3.1 Berdichevsky's galvanic distortion effects
229(1)
6.3.2 Larsen's galvanic distortion of a one-dimensional regional Earth
229(1)
6.3.3 Schmucker's extension for a two-dimensional regional Earth
230(1)
6.3.4 Bahr's equal phases
231(1)
6.3.5 Distortion decomposition
231(1)
6.3.6 Phase tensor
232(2)
6.3.7 Other approaches
234(1)
6.3.8 Extension for a three-dimensional regional Earth
235(2)
6.4 Determinable and indeterminable parts of the distortion tensor
237(1)
6.5 Statistical considerations
238(1)
6.6 Influence of distortion on the MT response
239(11)
6.6.1 A simple but instructive two-dimensional model - the Rhine Graben
239(3)
6.6.2 A simple but instructive three-dimensional distorting body - the embedded hemisphere
242(7)
6.6.3 Distorted North American Central Plains (NACP) impedance
249(1)
6.6.4 BC87 dataset - lit007 and lit008
250(1)
6.7 Recognizing distortion in magnetotelluric responses
250(28)
6.7.1 Forms of the magnetotelluric response tensor
250(3)
6.7.2 Dimensionality tools
253(15)
6.7.3 Directionality tools
268(10)
6.8 Removing distortion from magnetotelluric responses
278(13)
6.8.1 Realistic synthetic data, far-hi
278(6)
6.8.2 Actual data, lit007 and lit008
284(7)
6.9 Application to a one-dimensional anisotropic regional Earth
291(3)
6.10 Conclusions
294(9)
Acknowledgements
295(1)
References
295(8)
7 The two- and three-dimensional forward problems
303(44)
Chester Weiss
7.1 Introduction
303(1)
7.2 Numerical methods in two dimensions
304(5)
7.2.1 Boundary conditions in two dimensions
306(2)
7.2.2 Summary of the two-dimensional magnetotelluric differential problem statement (D)
308(1)
7.3 Finite differences, elements, volumes and all that
309(18)
7.3.1 Finite differences (FD)
310(2)
7.3.2 Finite elements (FE) and the variational formulation (V)
312(4)
7.3.3 Finite volumes (FV) and the variational formulation (V)
316(1)
7.3.4 Numerical examples in two dimensions
317(10)
7.4 The leap to three dimensions
327(15)
7.4.1 Finite-difference solutions in three dimensions
327(9)
7.4.2 Finite-element solutions in three dimensions
336(3)
7.4.3 Numerical examples in three dimensions
339(3)
7.5 Closing remarks
342(5)
Acknowledgements
344(1)
References
345(2)
8 The inverse problem
347(74)
William L. Rodi
Randall L. Mackie
8.1 Introduction
347(3)
8.1.1
Chapter plan
349(1)
8.2 Formulation of the magnetotelluric inverse problem
350(8)
8.2.1 Parameterization of conductivity models
350(2)
8.2.2 Magnetotelluric data and forward modeling functions
352(1)
8.2.3 Statement of the inverse problem
353(2)
8.2.4 Linear versus nonlinear inverse problems
355(2)
8.2.5 Well-posed and ill-posed inverse problems
357(1)
8.3 Least-squares solutions
358(10)
8.3.1 Existence and uniqueness of least-squares solutions
361(2)
8.3.2 Stability and model uncertainty
363(2)
8.3.3 The linearized problem
365(2)
8.3.4 Uncertainty analysis
367(1)
8.4 Damped least-squares and smooth models
368(13)
8.4.1 Stabilizing functional
370(3)
8.4.2 The nonlinear problem
373(1)
8.4.3 The linearized problem
373(2)
8.4.4 Uncertainty analysis
375(1)
8.4.5 Choosing the regularization parameter
376(3)
8.4.6 Comparison to Bayesian inference
379(2)
8.5 Minimization algorithms
381(9)
8.5.1 Newton's method
381(1)
8.5.2 Gauss-Newton method
382(1)
8.5.3 Levenberg-Marquardt method
383(1)
8.5.4 Model updates by conjugate gradients
384(3)
8.5.5 Nonlinear conjugate gradients
387(3)
8.5.6 Subspace methods
390(1)
8.6 Derivatives of the forward functions
390(6)
8.6.1 Theoretical sensitivity distribution
391(2)
8.6.2 Numerical techniques
393(3)
8.7 Examples
396(11)
8.7.1 One-dimensional models
396(7)
8.7.2 Three-dimensional models
403(4)
8.8 Beyond least squares
407(14)
8.8.1 Non-Gaussian data errors
409(1)
8.8.2 Non-quadratic stabilizers
409(2)
8.8.3 Minimization algorithms
411(1)
8.8.4 Examples
411(1)
8.8.5 Sharp boundary inversions
412(1)
8.8.6 Model bounds
413(1)
References
414(7)
9 Instrumentation and field procedures
421(59)
Ian J. Ferguson
9.1 Overview of magnetotelluric recording
421(3)
9.1.1 Requirements of magnetotelluric instrumentation
421(1)
9.1.2 Categories of magnetotelluric recording systems
422(2)
9.2 Magnetotelluric instrumentation: electrometers
424(13)
9.2.1 Physical principles
425(3)
9.2.2 Magnetotelluric electrodes
428(5)
9.2.3 Other components of magnetotelluric electrometers
433(2)
9.2.4 Field deployment of electrometers
435(2)
9.3 Magnetotelluric instrumentation: magnetometers
437(6)
9.3.1 Induction coil sensors
437(3)
9.3.2 Fluxgate sensors
440(1)
9.3.3 Additional types of magnetometer sensors
441(1)
9.3.4 Other components of magnetometers
442(1)
9.3.5 Field deployment of magnetometers
442(1)
9.4 Magnetotelluric data recording
443(6)
9.4.1 Digitization and dynamic range
443(1)
9.4.2 Data acquisition control and storage
444(1)
9.4.3 Sampling rates, frequency windows and recording strategies
444(2)
9.4.4 Power requirements and batteries
446(1)
9.4.5 Telemetry and distributed acquisition systems
447(1)
9.4.6 Magnetotelluric instrument calibration and instrument noise evaluation
448(1)
9.4.7 Common magnetotelluric site layout errors
449(1)
9.5 Magnetotelluric field procedure: site selection
449(15)
9.5.1 Physical requirements of magnetotelluric sites
450(1)
9.5.2 Electromagnetic noise
450(10)
9.5.3 Geological noise
460(3)
9.5.4 Artificial resistivity structures
463(1)
9.6 Fieldwork
464(16)
9.6.1 Survey planning and arrangement
464(2)
9.6.2 Site selection and permitting
466(1)
9.6.3 Required equipment and supplies
466(3)
9.6.4 Instrument calibration
469(1)
9.6.5 Site installation
469(3)
9.6.6 Site servicing
472(1)
9.6.7 Site retrieval
473(1)
References
474(6)
10 Case histories and geological applications
480(65)
Ian J. Ferguson
Alan G. Jones
Alan D. Chave
10.1 Introduction
480(1)
10.2 Magnetotelluric studies of the continental crust
480(20)
10.2.1 Imaging of the India-Asia collision
481(4)
10.2.2 Imaging of fluids in an oblique compressional orogen in the Southern Alps, New Zealand
485(8)
10.2.3 Three-dimensional imaging of the Ossa Morena Zone of the Variscan fold-thrust belt
493(7)
10.3 Magnetotelluric studies of the continental mantle
500(13)
10.3.1 Slave Craton
501(3)
10.3.2 Kaapvaal Craton
504(9)
10.4 Applied magnetotelluric studies
513(10)
10.4.1 Geothermal investigation
515(3)
10.4.2 Uranium exploration
518(5)
10.5 Marine magnetotelluric studies
523(13)
10.5.1 Imaging of the East Pacific Rise
525(4)
10.5.2 Marine petroleum exploration
529(7)
10.6 Conclusions
536(9)
References
536(9)
Index 545
Alan D. Chave is a Senior Scientist at Woods Hole Oceanographic Institution (WHOI). He has also been a Chartered Statistician (UK) since 2003 and has taught a graduate level course in statistics in the Massachusetts Institute of Technology/WHOI Joint Program for twenty years. For over thirty years, he has conducted research utilizing the magnetotelluric method, primarily in the oceans, and has pioneered research into producing modern magnetotelluric processing methods. Dr Chave has also designed instrumentation for optical and chemical measurements in the ocean and has played a leadership role in developing long-term ocean observatories worldwide. He has been an editor of Journal of Geophysical Research and editor-in-chief of Reviews of Geophysics. Alan G. Jones is Senior Professor and Head of Geophysics at the Dublin Institute for Advanced Studies and has been using magnetotellurics since the early 1970s. He has undertaken magnetotellurics research in Europe, southern Africa, Canada and China, for problems ranging from the near-surface (groundwater contamination) to mining, geothermal studies and tectonics of the deep mantle (to 1200 km). He has been instrumental in many developments of magnetotellurics, from processing to analysis to modelling/inversion to interpretation. He was awarded the Tuzo Wilson Medal of the Canadian Geophysical Union in 2006, appointed to Academia Europaea in 2009 and made a member of the Royal Irish Academy in 2010.