Atjaunināt sīkdatņu piekrišanu

E-grāmata: Making And Breaking Symmetry In Chemistry: Syntheses, Mechanisms And Molecular Rearrangements

(Univ College Dublin, Ireland)
  • Formāts: 292 pages
  • Izdošanas datums: 09-Mar-2022
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789811249679
Citas grāmatas par šo tēmu:
  • Formāts - PDF+DRM
  • Cena: 67,62 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: 292 pages
  • Izdošanas datums: 09-Mar-2022
  • Izdevniecība: World Scientific Publishing Co Pte Ltd
  • Valoda: eng
  • ISBN-13: 9789811249679
Citas grāmatas par šo tēmu:

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

The elucidation of reaction mechanisms generally requires the carefully designed control of molecular symmetry to distinguish between the many possible reaction pathways. Making and Breaking Symmetry in Chemistry emphasises the crucial role played by symmetry in modern synthetic chemistry. After discussion of a number of famous classical experiments, the advances brought about by the introduction of new techniques, in particular NMR spectroscopy, are exemplified in numerous cases taken from the recent literature. Experimental verification of many of the predictions made in Woodward and Hoffmann's explication of the Conservation of Orbital Symmetry are described. Applications that involve the breaking of molecular symmetry to resolve these and other mechanistic problems in organic, inorganic and organometallic chemistry are presented in the first sections of the book, together with many examples of the detection of hitherto hidden rearrangement processes.Subsequently, under the aegis of making molecular symmetry, examples of the preparation of highly symmetrical molecules found in the organic, organometallic or inorganic domains are discussed. These include Platonic hydrocarbons or boranes, tetrahedranes, cubanes, prismanes, dodecahedrane, fullerene fragments such as corannulene, sumanene or semibuckminsterfullerene, and other systems of unusual geometries or bonding characteristics (Möbius strips, molecular brakes and gears, Chauvin's carbomers, Fitjer's rotanes, persubstituted rings, metal-metal multiple bonds, etc.). The text also contains vignettes of many of the scientists who made these major advances, as well as short sections that briefly summarise key features of important topics that underpin the more descriptive material. These include some aspects of chirality, NMR spectroscopy, and the use of isotopic substitution to break molecular symmetry. A brief appendix on point group symmetry and nomenclature is also helpfully provided.
Preface vii
About the Author xi
Chapter 1 Introduction
1(12)
1.1 Symmetry Breaking --- Werner's Remarkable Insight
2(4)
1.2 Reaction Mechanisms
6(2)
1.3 Synthetic Goals
8(1)
1.4 New Reactions and Reagents
8(1)
1.5 Additional Comments
9(1)
References
10(3)
Chapter 2 Symmetry Breaking in Classic Mechanistic Investigations
13(22)
2.1 Benzyne
13(2)
2.2 The Favorskii Rearrangement
15(2)
2.3 On the Mechanism of the Walden Inversion
17(3)
2.4 Migration onto an Electron-deficient Carbon Centre
20(4)
2.4.1 The Pinacol-pinacolone Rearrangement
20(3)
2.4.2 The Wolff Rearrangement
23(1)
2.5 Neighbouring Group Participation
24(4)
2.6 Migration onto an Electron-deficient Nitrogen Centre
28(3)
2.6.1 The Beckmann Rearrangement
28(1)
2.6.2 The Curtius Rearrangement
29(2)
2.7 The Benzidine Rearrangement
31(1)
2.8 Closing Remarks
31(1)
References
32(3)
Chapter 3 Experimental Validation of the Conservation of Orbital Symmetry
35(29)
3.1 Electrocyclisations
36(3)
3.2 Cycloadditions and Cycloreversions
39(2)
3.3 Sigmatropic Shifts
41(18)
3.3.1 Suprafacial [ 1,5] and Antarafacial [ 1,7] Migrations
41(1)
3.3.2 [ 1,5] Shifts in Cyclopentadienes and Indenes
42(8)
3.3.3 [ 1,5] and [ 1,7] Sigmatropic Shifts in Cycloheptatrienes
50(3)
3.3.4 [ 3,3] and [ 5,5] Sigmatropic Shifts
53(6)
References
59(5)
Chapter 4 Symmetry Breaking in Reaction Mechanisms and Rearrangements: The Spectroscopic, X-ray Crystallographic and Computational Approach
64(57)
4.1 Alkene Metathesis
65(3)
4.2 Alkyne and Enyne Metathesis
68(1)
4.3 Carbonyl Insertions or Alkyl Migrations?
69(9)
4.3.1 13CO-labelling Studies on Manganese Carbonyl Complexes
69(3)
4.3.2 13CO-labelling Studies on Cobalt Carbonyl Clusters
72(4)
4.3.3 Alkyl Migration Leading to Metal Carbene Formation
76(2)
4.4 Classical or Non-Classical Ions --- The 2-norbornyl Cation Problem
78(5)
4.5 The Curious Case of Racemisation During Nucleophilic Substitution in a (Fluoroarene)Cr(CO)3 Complex
83(5)
4.5.1 The Preparation and Reactivity of Chiral Arene-chromium Carbonyl Complexes
83(3)
4.5.2 Cine, Tele-meta and Tele-para SArN Substitutions in (arene)Cr(CO)3 systems
86(2)
4.6 Isotopically Chiral Tripods
88(5)
4.6.1 The Chiral Phosphoryl Group
88(1)
4.6.2 The Chiral Methyl Group
89(4)
4.7 Use of Isotopes other than 2H or 13/14C as Mechanistic Probes
93(6)
4.7.1 Electron Transfer Processes
93(1)
4.7.2 Outer Sphere Electron Transfer
94(2)
4.7.3 Inner Sphere Electron Transfer
96(2)
4.7.4 A Classic Crossover Experiment Involving Metal-metal Bonds
98(1)
4.8 Sulfur-nitrogen Ring Rearrangements
99(5)
4.8.1 Dynamic Behaviour of [ S4N5]+ and S5N6
99(3)
4.8.2 Isomerisation of 1,3,2,4-dithiadiazolyl Radicals to Disulfides
102(2)
4.9 Rearrangements of Dicarba-Closo-Dodecaboranes, C2B10H12
104(3)
4.10 Symmetry with a Twist: Mobius Molecules
107(4)
4.10.1 Synthetic Aspects
107(3)
4.10.2 Lengthwise Cutting by Ozonolysis
110(1)
4.11 Closing Remarks
111(1)
References
111(10)
Chapter 5 The Detection and Elucidation of Hidden Molecular Rearrangements
121(63)
5.1 The Significance of Symmetry Breaking in NMR Spectroscopy
121(2)
5.2 The Role of Diastereotopic Nuclei in Dynamic Processes
123(4)
5.3 The Measurement of Activation Energies in Exchange Processes
127(3)
5.4 Isopropyl Groups as Mechanistic Probes for Rearrangement Processes
130(11)
5.4.1 Tris-chelate Complexes M(L-L)3
130(1)
5.4.2 Metal Cluster Cations
131(2)
5.4.3 Diphos and Arphos Complexes of Cobalt Clusters
133(2)
5.4.4 Mixed Metal Square-pyramidal Clusters
135(2)
5.4.5 Inversion of Corannulene
137(2)
5.4.6 Fluorinated Isopropyl Groups
139(2)
5.5 Metal Complexes of Hexaethylbenzene and Related Systems
141(6)
5.6 Rotations of Peripheral Ring Substituents in CnArn and Related Metal Complexes
147(8)
5.6.1 Hexa-arylated Benzenes
147(2)
5.6.2 Organometallic Derivatives of CnArB Systems
149(3)
5.6.3 19F NMR Spectroscopy as a Probe for Hindered Aryl Rotations
152(3)
5.7 Rotations and Migrations in Indenyl and Related Systems
155(4)
5.7.1 Indenyl and Ethylene Rotations in (indenyl) bis(ethylene)rhodium(I)
156(3)
5.7.2 Norbornadiene-rhodium Complexes of Pentamethylcorannulene
159(1)
5.8 The Dynamic Behaviour of Triptycenes
159(12)
5.8.1 Triptycenes as Molecular Bevel or Spur Gears
160(5)
5.8.2 Ferrocenyl Triptycenes
165(2)
5.8.3 Triptycenes as Components of Organometallic Molecular Brakes
167(4)
5.9 Dynamic Behaviour of Three-bladed Propellors
171(3)
5.9.1 NMR Studies of Triarylboranes or Triarylmethanes
171(1)
5.9.2 The Burgi-Dunitz Structure-correlation Approach
172(1)
5.9.3 An X-ray Crystallographic Study of Triarylphosphine Oxides and Related Molecules
172(2)
5.10 Concluding Remarks
174(1)
References
175(9)
Chapter 6 A Miscellany of Periodic Table Relationships
184(19)
6.1 Chiral Methanes
184(3)
6.2 Chiral Mixed-metal Clusters
187(3)
6.3 Sequential Multiple Bonds to a Single Metal Centre
190(1)
6.4 Metal-metal Multiple Bonds
191(3)
6.5 A Pseudo-butane made up of Consecutive Group 14 Elements
194(1)
6.6 Reduced Spin-spin Coupling Constants in NMR
195(2)
6.7 Making Patterns out of Apparent Chaos
197(2)
References
199(4)
Chapter 7 Molecules of Very High Symmetry
203(31)
7.1 Platonic Polyhedra and the Euler Relationship
203(2)
7.2 Boranes, Hydrocarbons and Inverse Polyhedra
205(2)
7.3 Syntheses of Molecular Platonic Solids and Related Polyhedral Species
207(13)
7.3.1 Towards Tetrahedrane
207(1)
7.3.2 [ 3]Prismane, C6H6
208(1)
7.3.3 [ 4]Prismane, C8H8 (Cubane)
209(1)
7.3.4 [ 5]Prismane, C10H10 (Pentaprismane)
210(1)
7.3.5 Pentagonal Dodecahedrane, C20H20
211(4)
7.3.6 Octahedrane, C12H12
215(3)
7.3.7 Nonahedrane, C14H14
218(1)
7.3.8 Decahedrane, C16H16
219(1)
7.4 Buckminsterfullerene, C60
220(5)
7.4.1 Corannulene, C20H10
223(1)
7.4.2 Sumanene, C21H12
224(1)
7.5 Highly Symmetric Inorganic Polyhedranes
225(3)
7.6 Closing Remarks
228(1)
References
229(5)
Chapter 8 Enhancing Rotational Symmetry
234(29)
8.1 Chauvin's Carbomers
234(5)
8.2 Fitjer's Universal Rotane Synthesis
239(5)
8.3 Functionalised Polycyclics of 3-or 5-fold Symmetry
244(2)
8.4 The Quest for Perfluoroferrocene
246(9)
8.4.1 Persubstituted Ring Systems
246(1)
8.4.2 Polyhalogenated Metal Sandwich Complexes
247(2)
8.4.3 Metal Complexes of Hexafluorobenzene
249(3)
8.4.4 Preparation of the Perfluorotropylium Cation
252(1)
8.4.5 Pentafluorocyclopentadienyl-metal Complexes
252(3)
8.5 Concluding Remarks
255(2)
References
257(6)
Appendix ---A Brief Introduction to Symmetry Point Groups 263(8)
Index 271