|
Manufacturing Optimization through Intelligent Techniques |
|
|
1 | (2) |
|
Conventional Optimization Techniques for Manufacturing Applications |
|
|
3 | (14) |
|
Brief Overview of Traditional Optimization Techniques |
|
|
3 | (1) |
|
Single Variable Techniques Suitable for Solving Various Manufacturing Optimization Problems (Direct Search Methods) |
|
|
4 | (3) |
|
|
5 | (1) |
|
Search with Fixed Step Size |
|
|
5 | (1) |
|
|
5 | (1) |
|
Search with Accelerated Step Size |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
|
7 | (1) |
|
|
7 | (1) |
|
Multivariable Techniques Suitable for Solving Various Manufacturing Optimization Problems (Direct Search Methods) |
|
|
7 | (5) |
|
Evolutionary Optimization Method |
|
|
7 | (1) |
|
|
8 | (1) |
|
Nelder--Mead Simplex Method |
|
|
8 | (1) |
|
|
9 | (1) |
|
|
10 | (1) |
|
Hooke--Jeeves Pattern Search Method |
|
|
10 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
|
11 | (1) |
|
Dynamic Programming Technique |
|
|
12 | (5) |
|
Representation of Multistage Decision Process |
|
|
13 | (2) |
|
|
15 | (2) |
|
Intelligent Optimization Techniques for Manufacturing Optimization Problems |
|
|
17 | (28) |
|
|
17 | (15) |
|
|
17 | (3) |
|
|
20 | (1) |
|
|
20 | (1) |
|
|
21 | (2) |
|
|
23 | (1) |
|
|
24 | (1) |
|
Fitness-Proportionate Selection with ``Roulette Wheel'' and ``Stochastic Universal'' Sampling |
|
|
24 | (1) |
|
|
25 | (1) |
|
|
26 | (1) |
|
|
26 | (1) |
|
|
27 | (1) |
|
|
28 | (1) |
|
|
28 | (1) |
|
|
29 | (1) |
|
Matrix Crossover (Two-Dimensional Crossover) |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
31 | (1) |
|
|
32 | (2) |
|
Optimization Procedure Using SA |
|
|
33 | (1) |
|
Ant Colony Optimization (ACO) |
|
|
34 | (4) |
|
|
35 | (1) |
|
|
36 | (2) |
|
Steps in Ant Colony Algorithm |
|
|
38 | (1) |
|
Particle Swarm Optimization (PSO) |
|
|
38 | (3) |
|
Background of Artificial Life |
|
|
39 | (1) |
|
Particle Swarm Optimization Technique |
|
|
39 | (1) |
|
Algorithm of Particle Swarm Optimization |
|
|
40 | (1) |
|
|
40 | (1) |
|
Comparisons between Genetic Algorithm and PSO |
|
|
41 | (1) |
|
|
41 | (4) |
|
|
42 | (1) |
|
General Structure of Tabu Search |
|
|
42 | (1) |
|
|
42 | (1) |
|
|
43 | (1) |
|
Intensification of Search |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
43 | (1) |
|
|
44 | (1) |
|
Optimal Design of Mechanical Elements |
|
|
45 | (36) |
|
|
45 | (3) |
|
|
46 | (1) |
|
|
46 | (1) |
|
|
46 | (1) |
|
Subsidiary Design Equations |
|
|
46 | (1) |
|
|
47 | (1) |
|
|
47 | (1) |
|
|
48 | (11) |
|
Mathematical Model of Gear Design |
|
|
48 | (1) |
|
Preliminary Gear Considerations |
|
|
48 | (1) |
|
|
48 | (1) |
|
|
48 | (1) |
|
Determination of Range of Pitch Circle Diameter for Pinion |
|
|
49 | (1) |
|
Determination of Range of Teeth for Pinion |
|
|
49 | (1) |
|
|
50 | (1) |
|
Efficiency of Coplanar Gears |
|
|
50 | (1) |
|
Calculation of Efficiency and Weight |
|
|
50 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
51 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
Applying Genetic Algorithm |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
52 | (1) |
|
|
53 | (1) |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
54 | (2) |
|
Applying Simulated Annealing Algorithm |
|
|
56 | (2) |
|
Gear Details (without Optimization) |
|
|
58 | (1) |
|
Details of the Optimized Gear |
|
|
59 | (1) |
|
Design Optimization of Three-Bar Truss |
|
|
59 | (7) |
|
|
59 | (1) |
|
|
59 | (4) |
|
|
63 | (1) |
|
|
63 | (1) |
|
|
64 | (1) |
|
|
64 | (1) |
|
|
65 | (1) |
|
|
65 | (1) |
|
|
66 | (1) |
|
Spring Design Optimization |
|
|
66 | (6) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
67 | (1) |
|
|
68 | (1) |
|
|
68 | (1) |
|
Constraint on Frequency of Surge Waves |
|
|
68 | (1) |
|
|
68 | (1) |
|
Limits on Design Variables |
|
|
68 | (1) |
|
Implementation of Genetic Algorithm |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (1) |
|
|
69 | (3) |
|
Design Optimization of Single-Point Cutting Tools |
|
|
72 | (9) |
|
Single-Point Cutting Tools |
|
|
72 | (1) |
|
|
72 | (1) |
|
Overview of Tool Geometry |
|
|
72 | (2) |
|
|
74 | (4) |
|
Design Optimization Problem of Single-Point Cutting Tool |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
|
78 | (1) |
|
Comparison of Results with Solution Obtained by Game Theory |
|
|
79 | (1) |
|
|
79 | (2) |
|
Optimization of Machining Tolerance Allocation |
|
|
81 | (40) |
|
Dimensions and Tolerances |
|
|
81 | (10) |
|
Classification of Tolerance |
|
|
81 | (1) |
|
|
81 | (1) |
|
Tolerance Modeling and Representation |
|
|
81 | (1) |
|
|
81 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
|
82 | (1) |
|
Tolerance and Cost Relationship |
|
|
82 | (1) |
|
|
83 | (1) |
|
Tolerance Allocation Methods |
|
|
84 | (1) |
|
Proportional Scaling Method |
|
|
85 | (1) |
|
|
86 | (1) |
|
|
86 | (1) |
|
Allocation by Weight Factors |
|
|
86 | (1) |
|
|
87 | (1) |
|
|
87 | (1) |
|
Constant Precision Factor Method |
|
|
87 | (1) |
|
|
87 | (1) |
|
Tolerance Allocation Using Least Cost Optimization |
|
|
88 | (1) |
|
Tolerance Analysis versus Tolerance Allocation |
|
|
89 | (1) |
|
Tolerance Design Optimization |
|
|
90 | (1) |
|
|
91 | (1) |
|
Tolerance Allocation of Welded Assembly |
|
|
91 | (3) |
|
|
91 | (2) |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
93 | (1) |
|
|
94 | (1) |
|
|
94 | (1) |
|
Tolerance Design Optimization of Overrunning Clutch Assembly |
|
|
94 | (5) |
|
|
94 | (1) |
|
Optimum Tolerances for Overrunning Clutch |
|
|
94 | (2) |
|
|
96 | (2) |
|
Implementation of Particle Swarm Optimization (PSO) |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
98 | (1) |
|
|
98 | (1) |
|
Tolerance Design Optimization of Stepped Cone Pulley |
|
|
99 | (5) |
|
|
99 | (1) |
|
|
99 | (3) |
|
|
102 | (1) |
|
Finish Turning Datum Surface |
|
|
102 | (1) |
|
|
102 | (1) |
|
|
102 | (2) |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
Tolerance Design Optimization of Stepped Block Assembly |
|
|
104 | (17) |
|
|
105 | (1) |
|
Optimization of Nominal Values of Noncritical Dimensions |
|
|
105 | (1) |
|
|
106 | (1) |
|
|
106 | (2) |
|
Implementation of Continuous Ant Colony Optimization (CACO) |
|
|
108 | (1) |
|
Randomly Generated Solutions in Ascending Order |
|
|
108 | (1) |
|
Global Search for Inferior Solutions |
|
|
108 | (2) |
|
|
110 | (1) |
|
|
111 | (1) |
|
|
112 | (1) |
|
|
113 | (1) |
|
After Applying CACO Algorithm |
|
|
114 | (1) |
|
Allocation of Tolerances for Optimal Nominal Values Using CACO |
|
|
114 | (1) |
|
|
115 | (1) |
|
Multiple-Criterion Objective Function |
|
|
116 | (1) |
|
|
117 | (1) |
|
|
118 | (1) |
|
|
118 | (3) |
|
Optimization of Operating Parameters for CNC Machine Tools |
|
|
121 | (34) |
|
Optimization of Turning Process |
|
|
121 | (10) |
|
|
121 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
122 | (1) |
|
|
123 | (1) |
|
|
123 | (1) |
|
Implementation of Nelder-Mead Simplex Method |
|
|
124 | (1) |
|
|
124 | (1) |
|
Solution by Nelder-Mead Simplex Method |
|
|
124 | (3) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
127 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
128 | (1) |
|
|
129 | (1) |
|
|
129 | (2) |
|
Optimization of Multi-Pass Turning Process |
|
|
131 | (3) |
|
Implementation of Dynamic Programming Technique |
|
|
131 | (3) |
|
Optimization of Face Milling Process |
|
|
134 | (4) |
|
|
134 | (1) |
|
|
135 | (1) |
|
|
135 | (1) |
|
|
136 | (1) |
|
Implementation of GA for Face Milling Process Optimization |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
137 | (1) |
|
|
138 | (1) |
|
|
138 | (1) |
|
Surface Grinding Process Optimization |
|
|
138 | (9) |
|
|
138 | (1) |
|
Determination of Subobjectives and Variables for Optimization |
|
|
139 | (1) |
|
Relationships between Two Subobjectives and Four Optimization Variables |
|
|
139 | (1) |
|
|
139 | (1) |
|
|
140 | (1) |
|
|
140 | (1) |
|
Thermal Damage Constraints |
|
|
140 | (1) |
|
Wheel Wear Parameter Constraint |
|
|
141 | (1) |
|
Machine Tool Stiffness Constraint |
|
|
141 | (1) |
|
Surface Finish Constraint |
|
|
142 | (1) |
|
Resultant Objective Function Model |
|
|
142 | (1) |
|
|
143 | (1) |
|
Implementation of GA for Four Variable Problems |
|
|
143 | (1) |
|
|
143 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
|
144 | (1) |
|
Implementation for Ten-Variable Surface Grinding Optimization |
|
|
145 | (1) |
|
|
145 | (1) |
|
|
146 | (1) |
|
Optimization of Machining Parameters for Multi-Tool Milling Operations Using Tabu Search |
|
|
147 | (8) |
|
|
147 | (1) |
|
|
147 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (1) |
|
|
148 | (4) |
|
|
152 | (3) |
|
Integrated Product Development and Optimization |
|
|
155 | (20) |
|
|
155 | (1) |
|
Integrated Product Development |
|
|
155 | (4) |
|
Design for Manufacturability (DFM) |
|
|
156 | (1) |
|
Design for Assembly (DFA) |
|
|
157 | (1) |
|
Design for Reliability (DFR) |
|
|
158 | (1) |
|
Design for Serviceability (DFS) |
|
|
159 | (1) |
|
Total Product Optimization --- Design for Life Cycle Cost (DLCC) |
|
|
159 | (7) |
|
Modeling for LCC Analysis |
|
|
160 | (2) |
|
|
162 | (1) |
|
|
163 | (1) |
|
|
164 | (2) |
|
|
166 | (3) |
|
|
169 | (2) |
|
|
171 | (1) |
|
|
172 | (3) |
|
|
173 | (2) |
|
|
175 | (10) |
|
Classification of Scheduling Problems |
|
|
175 | (3) |
|
Single Machine Scheduling |
|
|
176 | (1) |
|
|
176 | (1) |
|
|
176 | (1) |
|
Parallel Machine Scheduling |
|
|
176 | (1) |
|
|
177 | (1) |
|
|
178 | (1) |
|
Parallel Machine Scheduling Optimization Using Genetic Algorithm |
|
|
178 | (2) |
|
|
178 | (1) |
|
Genetic Algorithm Parameters |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
179 | (1) |
|
|
180 | (1) |
|
Implementation of Simulated Annealing Algorithm |
|
|
180 | (5) |
|
Notations and Terminology |
|
|
180 | (1) |
|
SA Algorithm with RIPS: Step-by-Step Procedure |
|
|
181 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
|
182 | (1) |
|
Improvement by SA Algorithm with RIPS |
|
|
182 | (1) |
|
|
183 | (2) |
|
Modern Manufacturing Applications |
|
|
185 | (20) |
|
Implementation of Genetic Algorithm for Grouping of Part Families and Machining Cell |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
185 | (1) |
|
|
186 | (1) |
|
|
186 | (1) |
|
Selection of Robot Coordinates Systems Using Genetic Algorithm |
|
|
186 | (7) |
|
Three-Degrees-of-Freedom Arm in Two Dimensions |
|
|
188 | (1) |
|
Three-Degree-of-Freedom Arm in Three Dimensions |
|
|
188 | (1) |
|
|
189 | (1) |
|
Input Data for Two-Dimension Problem |
|
|
190 | (1) |
|
Input Data for Three-Dimension Problem |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
190 | (1) |
|
|
191 | (2) |
|
Trajectory Planning for Robot Manipulators Using Genetic Algorithm |
|
|
193 | (8) |
|
|
194 | (1) |
|
|
194 | (1) |
|
|
195 | (1) |
|
|
195 | (1) |
|
|
195 | (2) |
|
|
197 | (1) |
|
|
197 | (1) |
|
|
198 | (1) |
|
|
198 | (3) |
|
Application of Intelligent Techniques for Adaptive Control Optimization |
|
|
201 | (4) |
|
Adaptive Control System (ACS) |
|
|
201 | (1) |
|
Adaptive Control Optimization System (ACOS) |
|
|
201 | (1) |
|
Application of Intelligent Techniques for ACOS |
|
|
202 | (1) |
|
|
203 | (2) |
|
Conclusions and Future Scope |
|
|
205 | (2) |
Index |
|
207 | |