Atjaunināt sīkdatņu piekrišanu

E-grāmata: Many-Body Theory of Condensed Matter Systems: An Introductory Course

(University of Western Ontario), (University of Western Ontario)
  • Formāts: PDF+DRM
  • Izdošanas datums: 30-Jul-2020
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108856034
  • Formāts - PDF+DRM
  • Cena: 63,04 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.
  • Formāts: PDF+DRM
  • Izdošanas datums: 30-Jul-2020
  • Izdevniecība: Cambridge University Press
  • Valoda: eng
  • ISBN-13: 9781108856034

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

"In this primer to the many-body theory of condensed-matter systems, the authors introduce the subject to the non-specialist in a broad, concise, and up-to-date manner. A wide range of topics are covered including the second quantization of operators, coherent states, quantum-mechanical Green's functions, linear response theory, and Feynman diagrammatic perturbation theory. Material is also incorporated from quantum optics, low-dimensional systems such as graphene, and localized excitations in systems with boundaries as in nanoscale materials. Over 100 problems are included at the end of chapters, which are used both to consolidate concepts and to introduce new material. This book is suitable as a teaching tool for graduate courses and is ideal for non-specialist students and researchers working in physics, materials science, chemistry, or applied mathematics who want to use the tools of many-body theory"--

Recenzijas

'This textbook for physics graduate courses introduces some of the mathematical methods used in applying the many-body theory of condensed matter. Researchers in other disciplines who desire to apply these methods in materials science, chemistry, or applied mathematics will appreciate ' F. Potter, Choice

Papildus informācija

For non-specialist students and researchers, this is a broad and concise introduction to the many-body theory of condensed-matter systems.
Preface xi
List of Abbreviations
xiii
1 Introduction to Second Quantization
1(33)
1.1 Creation and Annihilation Operators
3(6)
1.2 Second Quantization for Bosons and Fermions
9(3)
1.3 Coherent States
12(4)
1.4 Model Hamiltonians for Interacting Boson or Fermion Particles
16(6)
1.5 Hamiltonian Diagonalization Methods
22(12)
Problems
31(3)
2 Time Evolution and Equations of Motion
34(33)
2.1 Operator Methods in Different Quantum Pictures
35(6)
2.2 Forced Quantum Harmonic Oscillator
41(3)
2.3 Time Evolution of Coherent States
44(2)
2.4 Lattice Dynamics for Phonons
46(5)
2.5 The Interacting Boson Gas Revisited
51(1)
2.6 Exchange and Dipole-Exchange Spin Waves
52(2)
2.7 Electronic Bands of Graphene
54(3)
2.8 Density Fluctuations in an Electron Gas
57(6)
Problems
63(4)
3 Formal Properties of Green's Functions
67(27)
3.1 Real-Time Green's Functions
68(4)
3.2 Time Correlation Functions
72(2)
3.3 Spectral Representations
74(3)
3.4 Real and Imaginary Parts of Green's Functions
77(5)
3.5 Imaginary-Time Green's Functions
82(6)
3.6 Methods of Evaluating Green's Functions
88(3)
Problems
91(3)
4 Exact Methods for Green's Function
94(21)
4.1 Noninteracting Gas of Bosons or Fermions
94(6)
4.2 Green's Functions for a Graphene Sheet
100(1)
4.3 Interaction of Light with Atoms
101(5)
4.4 Dipole-Exchange Ferromagnet
106(2)
4.5 Paramagnet with Crystal-Field Anisotropy
108(4)
Problems
112(3)
5 Green's Functions Using Decoupling Methods
115(33)
5.1 Hartree--Fock Theory for an Interacting Fermion Gas
115(5)
5.2 Random Phase Approximation for Ferromagnets
120(6)
5.3 Random Phase Approximation for Antiferromagnets
126(4)
5.4 Electron Correlations and the Hubbard Model
130(5)
5.5 The Anderson Model for Localized States in Metals
135(6)
5.6 Microscopic Theory of Superconductivity
141(5)
Problems
146(2)
6 Linear Response Theory and Green's Functions
148(28)
6.1 The Density Matrix
149(2)
6.2 Linear Response Theory
151(2)
6.3 Response Functions and Green's Functions
153(3)
6.4 Response Functions and Applications
156(4)
6.5 Phonons in an Infinite Elastic Medium
160(3)
6.6 Application to the Kubo Formalism
163(6)
6.7 Inelastic Light Scattering
169(4)
Problems
173(3)
7 Green's Functions for Localized Excitations
176(26)
7.1 Acoustic Phonons at Surfaces
176(3)
7.2 Surface Spin Waves in Ferromagnets
179(5)
7.3 Edge Modes in Graphene Nanoribbons
184(6)
7.4 Photonic Bands in Multilayer Superlattices
190(5)
7.5 Impurity Modes in Ferromagnets
195(4)
Problems
199(3)
8 Diagrammatic Perturbation Methods
202(31)
8.1 The Grand Partition Function
203(3)
8.2 Wick's Theorem
206(6)
8.3 The Unperturbed Imaginary-Time Green's Function
212(1)
8.4 Diagrammatic Representation
213(11)
8.5 The Interacting Imaginary-Time Green's Function
224(6)
Problems
230(3)
9 Applications of Diagrammatic Methods
233(32)
9.1 Hartree--Fock Theory for Fermions
233(4)
9.2 Density Fluctuations in an Electron Gas
237(2)
9.3 Electron--Phonon Interactions
239(5)
9.4 Boson Expansion Methods for Spin Waves
244(3)
9.5 Scattering by Static Impurities
247(9)
9.6 Diagrammatic Techniques for Spin Operators
256(7)
Problems
263(2)
References 265(6)
Index 271
Michael G. Cottam is a Professor of Physics in the Department of Physics & Astronomy at the University of Western Ontario. He has previously been the Chair of the Department of Physics & Astronomy, the Director of Western University's Institute for Nanomaterials Science, and the Associate Dean in the Faculty of Science. Zahra Haghshenasfard holds PhDs from both the University of Isfahan in quantum optics and nonlinear processes, and from the University of Western Ontario in nonlinear processes for the magnetization dynamics in nanowires.