Atjaunināt sīkdatņu piekrišanu

Marine Structural Design 2nd edition [Hardback]

(Head of the Institute of Structural Engineering, Zhejiang University, China), (Chair Professor, Zhejiang University, China)
  • Formāts: Hardback, 1008 pages, height x width: 235x191 mm, weight: 2140 g, 200 illustrations; Illustrations, unspecified
  • Izdošanas datums: 12-Oct-2015
  • Izdevniecība: Butterworth-Heinemann Ltd
  • ISBN-10: 0080999972
  • ISBN-13: 9780080999975
Citas grāmatas par šo tēmu:
  • Hardback
  • Cena: 178,26 €
  • Grāmatu piegādes laiks ir 3-4 nedēļas, ja grāmata ir uz vietas izdevniecības noliktavā. Ja izdevējam nepieciešams publicēt jaunu tirāžu, grāmatas piegāde var aizkavēties.
  • Daudzums:
  • Ielikt grozā
  • Piegādes laiks - 4-6 nedēļas
  • Pievienot vēlmju sarakstam
  • Formāts: Hardback, 1008 pages, height x width: 235x191 mm, weight: 2140 g, 200 illustrations; Illustrations, unspecified
  • Izdošanas datums: 12-Oct-2015
  • Izdevniecība: Butterworth-Heinemann Ltd
  • ISBN-10: 0080999972
  • ISBN-13: 9780080999975
Citas grāmatas par šo tēmu:
Marine Structural Design, Second Edition, is a wide-ranging, practical guide to marine structural analysis and design, describing in detail the application of modern structural engineering principles to marine and offshore structures.Organized in five parts, the book covers basic structural design principles, strength, fatigue and fracture, and reliability and risk assessment, providing all the knowledge needed for limit-state design and re-assessment of existing structures.Updates to this edition include new chapters on structural health monitoring and risk-based decision-making, arctic marine structural development, and the addition of new LNG ship topics, including composite materials and structures, uncertainty analysis, and green ship concepts.Provides the structural design principles, background theory, and know-how needed for marine and offshore structural design by analysisCovers strength, fatigue and fracture, reliability, and risk assessment together in one resource, emphasizing practical considerations and applicationsUpdates to this edition include new chapters on structural health monitoring and risk-based decision making, and new content on arctic marine structural design

Papildus informācija

The most complete guide to marine and offshore structural design by analysis, from basic design principles, to strength, fatigue and fracture, and reliability and risk assessment
Preface to First Edition xxvii
Preface to Second Edition xxix
Part 1: Structural Design Principles 1(274)
Chapter 1 Introduction
3(16)
1.1 Structural Design Principles
3(3)
1.1.1 Introduction
3(1)
1.1.2 Limit-State Design
4(2)
1.2 Strength and Fatigue Analysis
6(5)
1.2.1 Ultimate Strength Criteria
6(2)
1.2.2 Design for Accidental Loads
8(1)
1.2.3 Design for Fatigue
9(2)
1.3 Structural Reliability Applications
11(3)
1.3.1 Structural Reliability Concepts
11(1)
1.3.2 Reliability-Based Calibration of Design Factor
12(1)
1.3.3 Requalification of Existing Structures
13(1)
1.4 Risk Assessment
14(1)
1.4.1 Application of Risk Assessment
14(1)
1.4.2 Risk-Based Inspection
14(1)
1.4.3 Human and Organization Factors
15(1)
1.5 Layout of This Book
15(2)
1.6 How to Use This Book
17(1)
References
17(2)
Chapter 2 Marine Composite Materials and Structure
19(20)
2.1 Introduction
19(1)
2.2 The Application of Composites in the Marine Industry
19(6)
2.2.1 Ocean Environment
20(2)
2.2.2 Application in the Shipbuilding Industry
22(1)
2.2.3 Marine Aviation Vehicles and Off-Shore Structure
23(2)
2.3 Composite Material Structure
25(4)
2.3.1 Fiber Reinforcements
26(2)
2.3.2 Resin Systems
28(1)
2.4 Material Property
29(6)
2.4.1 Orthotropic Properties
31(3)
2.4.2 Orthotropic Properties in Plane Stress
34(1)
2.5 Key Challenges for the Future of Marine Composite Materials
35(1)
References
36(3)
Chapter 3 Green Ship Concepts
39(10)
3.1 General
39(1)
3.2 Emissions
39(5)
3.2.1 Regulations on Air Pollution
40(1)
3.2.2 Regulations on GHGs
40(1)
3.2.3 Effect of Design Variables on the EEDI
40(3)
3.2.4 Influence of Speed on the EEDI
43(1)
3.2.5 Influence of Hull Steel Weight on the EEDI
43(1)
3.3 Ballast Water Treatment
44(3)
3.4 Underwater Coatings
47(1)
References
47(2)
Chapter 4 LNG Carrier
49(24)
4.1 Introduction
49(1)
4.2 Development
50(1)
4.3 Typical Cargo Cycle
51(2)
4.3.1 Inert
52(1)
4.3.2 Gas Up
52(1)
4.3.3 Cool Down
52(1)
4.3.4 Bulk Loading
52(1)
4.3.5 Voyage
52(1)
4.3.6 Discharge
53(1)
4.3.7 Gas Free
53(1)
4.4 Containment Systems
53(6)
4.4.1 Self-Supporting Type
54(2)
4.4.2 Membrane Type
56(3)
4.5 Structural Design of the LNG Carrier
59(7)
4.5.1 ULS (Ultimate Limit State) Design of the LNG Carrier
59(7)
4.6 Fatigue Design of an LNG Carrier
66(4)
4.6.1 Preliminary Design Phase
66(1)
4.6.2 Fatigue Design Phase
67(3)
References
70(3)
Chapter 5 Wave Loads for Ship Design and Classification
73(22)
5.1 Introduction
73(1)
5.2 Ocean Waves and Wave Statistics
73(8)
5.2.1 Basic Elements of Probability and Random Processes
73(3)
5.2.2 Statistical Representation of the Sea Surface
76(1)
5.2.3 Ocean Wave Spectra
76(3)
5.2.4 Moments of Spectral Density Function
79(1)
5.2.5 Statistical Determination of Wave Heights and Periods
80(1)
5.3 Ship Response to a Random Sea
81(7)
5.3.1 Introduction
81(2)
5.3.2 Wave-Induced Forces
83(1)
5.3.3 Structural Response
84(1)
5.3.4 Slamming and Green Water on Deck
85(3)
5.4 Ship Design for Classification
88(4)
5.4.1 Design Value of Ship Response
88(1)
5.4.2 Design Loads per Classification Rules
88(4)
References
92(3)
Chapter 6 Wind Loads for Offshore Structures
95(24)
6.1 Introduction
95(1)
6.2 Classification Rules for Design
95(13)
6.2.1 Wind Data
95(1)
6.2.2 Wind Conditions
96(4)
6.2.3 Wind Loads
100(8)
6.3 Research of Wind Loads on Ships and Platforms
108(8)
6.3.1 Wind Loads on Ships
108(5)
6.3.2 Wind Loads on Platforms
113(3)
References
116(3)
Chapter 7 Loads and Dynamic Response for Offshore Structures
119(34)
7.1 General
119(1)
7.2 Environmental Conditions
119(6)
7.2.1 Environmental Criteria
119(2)
7.2.2 Regular Waves
121(1)
7.2.3 Irregular Waves
122(1)
7.2.4 Wave Scatter Diagram
122(3)
7.3 Environmental Loads and Floating Structure Dynamics
125(3)
7.3.1 Environmental Loads
125(1)
7.3.2 Sea Loads on Slender Structures
125(1)
7.3.3 Sea Loads on Large-Volume Structures
126(1)
7.3.4 Floating Structure Dynamics
127(1)
7.4 Structural Response Analysis
128(5)
7.4.1 Structural Analysis
128(1)
7.4.2 Response Amplitude Operator
129(4)
7.5 Extreme Values
133(14)
7.5.1 General
133(2)
7.5.2 Short-Term Extreme Approach
135(4)
7.5.3 Long-Term Extreme Approach
139(2)
7.5.4 Prediction of Most Probable Maximum Extreme for Non-Gaussian Process
141(6)
7.6 Concluding Remarks
147(1)
References
148(1)
Appendix A: Elastic Vibrations of Beams
149(4)
Vibration of a Spring/Mass System
149(1)
Elastic Vibration of Beams
150(3)
Chapter 8 Scantling of Ship's Hulls by Rules
153(18)
8.1 General
153(1)
8.2 Basic Concepts of Stability and Strength of Ships
154(4)
8.2.1 Stability
154(1)
8.2.2 Strength
155(3)
8.2.3 Corrosion Allowance
158(1)
8.3 Initial Scantling Criteria for Longitudinal Strength
158(3)
8.3.1 Introduction
158(1)
8.3.2 Hull Girder Strength
159(2)
8.4 Initial Scantling Criteria for Transverse Strength
161(1)
8.4.1 Introduction
161(1)
8.4.2 Transverse Strength
162(1)
8.5 Initial Scantling Criteria for Local Strength
162(8)
8.5.1 Local Bending of Beams
162(3)
8.5.2 Local Bending Strength of Plates
165(1)
8.5.3 Structure Design of Bulkheads, Decks, and Bottom
166(1)
8.5.4 Buckling of Platings
166(3)
8.5.5 Buckling of Profiles
169(1)
References
170(1)
Chapter 9 Ship Hull Scantling Design by Analysis
171(10)
9.1 General
171(1)
9.2 Design Loads
171(2)
9.3 Strength Analysis Using Finite Element Methods
173(6)
9.3.1 Modeling
173(3)
9.3.2 Boundary Conditions
176(1)
9.3.3 Types of Elements
177(1)
9.3.4 Postprocessing
177(2)
9.4 Fatigue Damage Evaluation
179(1)
9.4.1 General
179(1)
9.4.2 Fatigue Check
179(1)
References
180(1)
Chapter 10 Offshore Soil Geotechnics
181(16)
10.1 Introduction
181(1)
10.2 Subsea Soil Investigation
181(7)
10.2.1 Offshore Soil Investigation Equipment Requirements
182(4)
10.2.2 Subsea Survey Equipment Interfaces
186(2)
10.3 Deepwater Foundation
188(6)
10.3.1 Foundations for Mooring
188(1)
10.3.2 Suction Caisson
188(1)
10.3.3 Spudcan Footings
189(3)
10.3.4 Pipe Piles
192(2)
References
194(3)
Chapter 11 Offshore Structural Analysis
197(32)
11.1 Introduction
197(4)
11.1.1 General
197(1)
11.1.2 Design Codes
197(1)
11.1.3 Government Requirements
198(1)
11.1.4 Certification/Classification Authorities
198(1)
11.1.5 Codes and Standards
199(1)
11.1.6 Other Technical Documents
200(1)
11.2 Project Planning
201(3)
11.2.1 General
201(1)
11.2.2 Design Basis
201(2)
11.2.3 Design Brief
203(1)
11.3 Use of Finite Element Analysis
204(8)
11.3.1 Introduction
204(2)
11.3.2 Stiffness Matrix for 2D Beam Elements
206(2)
11.3.3 Stiffness Matrix for 3D Beam Elements
208(4)
11.4 Design Loads and Load Application
212(2)
11.5 Structural Modeling
214(13)
11.5.1 General
214(1)
11.5.2 Jacket Structures
214(3)
11.5.3 Floating Production and Offloading Systems (FPSO)
217(7)
11.5.4 TLP, Spar, and Semisubmersible
224(3)
References
227(2)
Chapter 12 Development of Arctic Offshore Technology
229(16)
12.1 Historical Background
229(3)
12.2 The Research Incentive
232(1)
12.3 Industrial Development in Cold Regions
233(4)
12.3.1 Arctic Ships
233(1)
12.3.2 Offshore Structures
234(3)
12.4 The Arctic Offshore Technology Program
237(2)
12.4.1 Three Areas of Focus
237(1)
12.4.2 Environmental and Climatic Change
237(1)
12.4.3 Materials for the Arctic
238(1)
12.5 Highlights
239(3)
12.5.1 Mechanical Resistance to Slip Movement in Level Ice
239(1)
12.5.2 Ice Forces on Fixed Structures
240(2)
12.5.3 Concrete Durability in Arctic Offshore Structures
242(1)
12.6 Conclusion
242(1)
References
243(2)
Chapter 13 Limit-State Design of Offshore Structures
245(14)
13.1 Limit-State Design
245(1)
13.2 ULS Design
246(7)
13.2.1 Ductility and Brittle Fracture Avoidance
246(1)
13.2.2 Plated Structures
247(1)
13.2.3 Shell Structures
248(5)
13.3 FLS Design
253(5)
13.3.1 Introduction
253(2)
13.3.2 Fatigue Analysis
255(2)
13.3.3 Fatigue Design
257(1)
References
258(1)
Chapter 14 Ship Vibrations and Noise Control
259(16)
14.1 Introduction
259(1)
14.2 Basic Beam Theory of Ship Vibration
260(1)
14.3 Beam Theory of Steady-State Ship Vibration
261(1)
14.4 Damping of Hull Vibration
262(1)
14.5 Vibration and Noise Control
263(4)
14.5.1 Propeller Radiated Signatures
263(2)
14.5.2 Vortex Shedding Mechanisms
265(2)
14.5.3 After-Body Slamming
267(1)
14.6 Vibration Analysis
267(6)
14.6.1 Procedure Outline of Ship Vibration Analysis
268(1)
14.6.2 Finite Element Modeling
269(2)
14.6.3 Free Vibration
271(1)
14.6.4 Forced Vibration
271(2)
Further Reading
273(2)
Part 2: Ultimate Strength 275(200)
Chapter 15 Buckling/Collapse of Columns and Beam-Columns
277(16)
15.1 Buckling Behavior and Ultimate Strength of Columns
277(4)
15.1.1 Buckling Behavior
277(2)
15.1.2 Perry—Robertson Formula
279(1)
15.1.3 Johnson—Ostenfeld Formula
280(1)
15.2 Buckling Behavior and Ultimate Strength of Beam-Columns
281(4)
15.2.1 Beam-Column with Eccentric Load
281(1)
15.2.2 Beam-Column with Initial Deflection and an Eccentric Load
282(1)
15.2.3 Ultimate Strength of Beam-Columns
283(1)
15.2.4 Alternative Ultimate Strength Equation—Initial Yielding
284(1)
15.3 Plastic Design of Beam-Columns
285(3)
15.3.1 Plastic Bending of Beam Cross Section
285(1)
15.3.2 Plastic Hinge Load
286(1)
15.3.3 Plastic Interaction under Combined Axial Force and Bending
287(1)
15.4 Examples
288(3)
15.4.1 Example 15.1: Elastic Buckling of Columns with Alternative Boundary Conditions
288(2)
15.4.2 Example 15.2: Two Types of Ultimate Strength: Buckling versus Fracture
290(1)
References
291(2)
Chapter 16 Buckling and Local Buckling of Tubular Members
293(46)
16.1 Introduction
293(1)
16.1.1 General
293(1)
16.1.2 Safety Factors for Offshore Strength Assessment
294(1)
16.2 Experiments
294(13)
16.2.1 Test Specimens
294(1)
16.2.2 Material Tests
295(3)
16.2.3 Buckling Test Procedures
298(4)
16.2.4 Test Results
302(5)
16.3 Theory of Analysis
307(19)
16.3.1 Simplified Elastoplastic Large Deflection Analysis
307(13)
16.3.2 Idealized Structural Unit Analysis
320(6)
16.4 Calculation Results
326(9)
16.4.1 Simplified Elastoplastic Large Deflection Analysis
326(4)
16.4.2 Idealized Structural Unit Method Analysis
330(5)
16.5 Conclusions
335(1)
16.6 Example
336(1)
16.6.1 Example 16.1: Comparison of the Idealized Structural Unit Method and Plastic Node Methods
336(1)
References
337(2)
Chapter 17 Ultimate Strength of Plates and Stiffened Plates
339(14)
17.1 Introduction
339(6)
17.1.1 General
339(1)
17.1.2 Solution of Differential Equation
340(1)
17.1.3 Boundary Conditions
341(2)
17.1.4 Fabrication-Related Imperfections and In-service Structural Degradation
343(2)
17.1.5 Correction for Plasticity
345(1)
17.2 Combined Loads
345(3)
17.2.1 Buckling—SLS
346(1)
17.2.2 Ultimate Strength—ULS
347(1)
17.3 Buckling Strength of Plates
348(1)
17.4 Ultimate Strength of Unstiffened Plates
349(1)
17.4.1 Long Plates and Wide Plates
349(1)
17.4.2 Plates Under Lateral Pressure
350(1)
17.4.3 Shear Strength
350(1)
17.4.4 Combined Loads
350(1)
17.5 Ultimate Strength of Stiffened Panels
350(1)
17.5.1 Beam-Column Buckling
350(1)
17.5.2 Tripping of Stiffeners
351(1)
17.6 Gross Buckling of Stiffened Panels (Overall Grillage Buckling)
351(1)
References
351(2)
Chapter 18 Ultimate Strength of Cylindrical Shells
353(14)
18.1 Introduction
353(1)
18.1.1 General
353(1)
18.1.2 Buckling Failure Modes
353(1)
18.2 Elastic Buckling of Unstiffened Cylindrical Shells
354(5)
18.2.1 Equilibrium Equations for Cylindrical Shells
354(2)
18.2.2 Axial Compression
356(2)
18.2.3 Bending
358(1)
18.2.4 External Lateral Pressure
358(1)
18.3 Buckling of Ring-Stiffened Shells
359(3)
18.3.1 Axial Compression
359(1)
18.3.2 Hydrostatic Pressure
360(2)
18.3.3 Combined Axial Compression and External Pressure
362(1)
18.4 Buckling of Stringer- and Ring-Stiffened Shells
362(3)
18.4.1 Axial Compression
362(2)
18.4.2 Radial Pressure
364(1)
18.4.3 Axial Compression and Radial Pressure
364(1)
References
365(2)
Chapter 19 A Theory of Nonlinear Finite Element Analysis
367(26)
19.1 General
367(1)
19.2 Elastic Beam-Column with Large Displacements
368(2)
19.3 The Plastic Node Method
370(7)
19.3.1 History of the Plastic Node Method
370(1)
19.3.2 Consistency Condition and Hardening Rates for Beam Cross Sections
370(4)
19.3.3 Plastic Displacement and Strain at Nodes
374(2)
19.3.4 Elastic—Plastic Stiffness Equation for Elements
376(1)
19.4 Transformation Matrix
377(2)
19.5 Appendix A: Stress-Based Plasticity Constitutive Equations
379(10)
19.5.1 General
379(2)
19.5.2 Relationship between Stress and Strain in the Elastic Region
381(1)
19.5.3 Yield Criterion
382(2)
19.5.4 Plastic Strain Increment
384(4)
19.5.5 Stress Increment—Strain Increment Relation in the Plastic Region
388(1)
19.6 Appendix B: Deformation Matrix
389(1)
References
390(3)
Chapter 20 Collapse Analysis of Ship Hulls
393(34)
20.1 Introduction
393(2)
20.2 Hull Structural Analysis Based on the PNM
395(8)
20.2.1 Beam-Column Element
395(2)
20.2.2 Attached Plating Element
397(2)
20.2.3 Shear Panel Element
399(1)
20.2.4 Nonlinear Spring Element
400(1)
20.2.5 Tension-Tearing Rupture
401(1)
20.2.6 Computational Procedures
401(2)
20.3 Analytical Equations for Hull Girder Ultimate Strength
403(5)
20.3.1 Ultimate Moment Capacity Based on Elastic Section Modulus
404(1)
20.3.2 Ultimate Moment Capacity Based on Fully Plastic Moment
405(1)
20.3.3 Proposed Ultimate Strength Equations
406(2)
20.4 Modified Smith Method Accounting for Corrosion and Fatigue Defects
408(5)
20.4.1 Tensile and Corner Elements
408(1)
20.4.2 Compressive Stiffened Panels
409(1)
20.4.3 Crack Propagation Prediction
410(1)
20.4.4 Corrosion Rate Model
410(3)
20.5 Comparisons of Hull Girder Strength Equations and Smith Method
413(2)
20.6 Numerical Examples Using the Proposed PNM
415(8)
20.6.1 Collapse of a Stiffened Plate
415(2)
20.6.2 Collapse of an Upper Deck Structure
417(1)
20.6.3 Collapse of Stiffened Box Girders
417(2)
20.6.4 Ultimate Longitudinal Strength of Hull Girders
419(3)
20.6.5 Quasi-static Analysis of a Side Collision
422(1)
20.7 Conclusions
423(1)
References
424(3)
Chapter 21 Offshore Structures Under Impact Loads
427(20)
21.1 General
427(1)
21.2 Finite Element Formulation
428(3)
21.2.1 Equations of Motion
428(1)
21.2.2 Load—Displacement Relationship of the Hit Member
429(1)
21.2.3 Beam-Column Element for Modeling of the Struck Structure
430(1)
21.2.4 Computational Procedure
430(1)
21.3 Collision Mechanics
431(3)
21.3.1 Fundamental Principles
431(1)
21.3.2 Conservation of Momentum
432(1)
21.3.3 Conservation of Energy
432(2)
21.4 Examples
434(11)
21.4.1 Mathematical Equations for Impact Forces and Energies in Ship/Platform Collisions
434(1)
21.4.2 Basic Numerical Examples
435(6)
21.4.3 Application to Practical Collision Problems
441(4)
21.5 Conclusions
445(1)
References
446(1)
Chapter 22 Offshore Structures Under Earthquake Loads
447(12)
22.1 General
447(1)
22.2 Earthquake Design per API RP2A
448(1)
22.3 Equations and Motion
449(2)
22.3.1 Equation of Motion
449(1)
22.3.2 Nonlinear Finite Element Model
450(1)
22.3.3 Analysis Procedure
450(1)
22.4 Numerical Examples
451(6)
22.4.1 Example 22.1: Clamped Beam under Lateral Load
451(1)
22.4.2 Example 22.2: Two-Dimensional Frame Subjected to Earthquake Loading
452(2)
22.4.3 Example 22.3: Offshore Jacket Platform Subjected to Earthquake Loading
454(3)
22.5 Conclusions
457(1)
References
457(2)
Chapter 23 Ship Collision and Grounding
459(16)
23.1 Introduction
459(1)
23.1.1 Collision and Grounding Design Standards
460(1)
23.2 Mechanics of Ship Collision and Grounding
460(1)
23.2.1 Internal Mechanics
460(1)
23.2.2 External Mechanics
461(1)
23.3 Ship Collision Research
461(6)
23.3.1 Ship—Ship Collision Research
461(6)
23.4 Ship Grounding Research
467(3)
23.4.1 Ship Grounding on Shoal
468(2)
23.5 Designs against Collision and Grounding
470(2)
23.5.1 Buffer Bow
471(1)
23.5.2 Sandwich Panels
471(1)
23.5.3 Innovative Double-Hull Designs
471(1)
References
472(3)
Part 3: Fatigue and Fracture 475(104)
Chapter 24 Mechanism of Fatigue and Fracture
477(12)
24.1 Introduction
477(1)
24.2 Fatigue Overview
477(2)
24.3 Stress-Controlled Fatigue
479(1)
24.4 Cumulative Damage for Variable Amplitude Loading
480(1)
24.5 Strain-Controlled Fatigue
481(3)
24.6 Fracture Mechanics in Fatigue Analysis
484(1)
24.7 Examples
485(2)
24.7.1 Example 24.1: Fatigue Life Cycle Calculation
485(1)
24.7.2 Example 24.2: Fracture-Mechanics-Based Crack Growth Life Integration
486(1)
References
487(2)
Chapter 25 Fatigue Capacity
489(20)
25.1 S—N Curves
489(8)
25.1.1 General
489(2)
25.1.2 Effect of Plate Thickness
491(1)
25.1.3 Effect of Seawater and Corrosion Protection
492(1)
25.1.4 Effect of Mean Stress
492(1)
25.1.5 Comparisons of S—N Curves in Design Standards
493(3)
25.1.6 Fatigue Strength Improvement
496(1)
25.1.7 Experimental S—N Curves
496(1)
25.2 Estimation of the Stress Range
497(4)
25.2.1 Nominal Stress Approach
497(1)
25.2.2 Hot-Spot Stress Approach
498(2)
25.2.3 Notch Stress Approach
500(1)
25.3 Stress Concentration Factors
501(3)
25.3.1 Definition of SCFs
501(1)
25.3.2 Determination of SCF by Experimental Measurement
501(1)
25.3.3 Parametric Equations for SCFs
501(1)
25.3.4 Hot-Spot Stress Calculation Based on FEA
502(2)
25.4 Examples
504(2)
25.4.1 Example 25.1: Fatigue Damage Calculation
504(2)
References
506(3)
Chapter 26 Fatigue Loading and Stresses
509(18)
26.1 Introduction
509(1)
26.2 Fatigue Loading for Oceangoing Ships
510(2)
26.3 Fatigue Stresses
512(4)
26.3.1 General
512(1)
26.3.2 Long-Term Fatigue Stress Based on the Weibull Distribution
512(1)
26.3.3 Long-Term Stress Distribution Based on the Deterministic Approach
513(1)
26.3.4 Long-Term Stress Distribution—Spectral Approach
514(2)
26.4 Fatigue Loading Defined Using Scatter Diagrams
516(1)
26.4.1 General
516(1)
26.4.2 Mooring- and Riser-Induced Damping in Fatigue Sea States
517(1)
26.5 Fatigue Load Combinations
517(3)
26.5.1 General
517(1)
26.5.2 Fatigue Load Combinations for Ship Structures
518(1)
26.5.3 Fatigue Load Combinations for Offshore Structures
519(1)
26.6 Examples
520(4)
26.6.1 Example 26.1: Long-Term Stress Range Distribution—Deterministic Approach
520(3)
26.6.2 Example 26.2: Long-Term Stress Range Distribution—Spectral Approach
523(1)
26.7 Concluding Remarks
524(1)
References
525(2)
Chapter 27 Simplified Fatigue Assessment
527(10)
27.1 Introduction
527(1)
27.2 Deterministic Fatigue Analysis
528(1)
27.3 Simplified Fatigue Assessment
528(2)
27.3.1 Calculation of Accumulated Damage
528(2)
27.3.2 Weibull Stress Distribution Parameters
530(1)
27.4 Simplified Fatigue Assessment for Bilinear S—N Curves
530(1)
27.5 Allowable Stress Range
531(1)
27.6 Design Criteria for Connections around Cutout Openings
531(3)
27.6.1 General
531(2)
27.6.2 Stress Criteria for Collar Plate Design
533(1)
27.7 Examples
534(1)
27.7.1 Example 27.1: Fatigue Design of a Semisubmersible
534(1)
References
535(2)
Chapter 28 Spectral Fatigue Analysis and Design
537(20)
28.1 Introduction
537(1)
28.1.1 General
537(1)
28.1.2 Terminology
538(1)
28.2 Spectral Fatigue Analysis
538(3)
28.2.1 Fatigue Damage Acceptance Criteria
538(1)
28.2.2 Fatigue Damage Calculated Using the Frequency—Domain Solution
539(2)
28.3 Time—Domain Fatigue Analysis
541(2)
28.3.1 Application
541(1)
28.3.2 Analysis Methodology for Time—Domain Fatigue of Pipelines
541(1)
28.3.3 Analysis Methodology for Time—Domain Fatigue of Risers
542(1)
28.3.4 Analysis Methodology for Time—Domain Fatigue of Nonlinear Ship Response
543(1)
28.4 Structural Analysis
543(3)
28.4.1 Overall Structural Analysis
543(3)
28.4.2 Local Structural Analysis
546(1)
28.5 Fatigue Analysis and Design
546(9)
28.5.1 Overall Design
546(1)
28.5.2 Stress Range Analysis
547(1)
28.5.3 Spectral Fatigue Parameters
547(6)
28.5.4 Fatigue Damage Assessment
553(1)
28.5.5 Fatigue Analysis and Design Checklist
554(1)
28.5.6 Drawing Verification
555(1)
28.6 Classification Society Interface
555(1)
28.6.1 Submittal and Approval of Design Brief
555(1)
28.6.2 Submittal and Approval of Task Report
555(1)
28.6.3 Incorporation of Comments from Classification Society
555(1)
References
555(2)
Chapter 29 Application of Fracture Mechanics
557(12)
29.1 Introduction
557(1)
29.1.1 General
557(1)
29.1.2 Fracture Mechanics Design Check
557(1)
29.2 Level 1: The CTOD Design Curve
558(2)
29.2.1 The Empirical Equations
558(1)
29.2.2 The British Welding Institute CTOD Design Curve
559(1)
29.3 Level 2: The Central Electricity Generating Board R6 Diagram
560(1)
29.4 Level 3: The FAD
561(1)
29.5 Fatigue Damage Estimation Based on Fracture Mechanics
562(2)
29.5.1 Crack Growth Due to Constant Amplitude Loading
562(1)
29.5.2 Crack Growth due to Variable Amplitude Loading
563(1)
29.6 Comparison of Fracture Mechanics and S—N Curve Approaches for Fatigue Assessment
564(1)
29.7 Fracture Mechanics Applied in Aerospace and Power Generation Industries
564(1)
29.8 Examples
565(1)
29.8.1 Example 29.1: Maximum Tolerable Defect Size in Butt Weld
565(1)
References
566(3)
Chapter 30 Material Selections and Damage Tolerance Criteria
569(10)
30.1 Introduction
569(1)
30.2 Material Selection and Fracture Prevention
569(2)
30.2.1 Material Selection
569(1)
30.2.2 Higher-Strength Steel
570(1)
30.2.3 Prevention of Fracture
571(1)
30.3 Weld Improvement and Repair
571(4)
30.3.1 General
571(1)
30.3.2 Fatigue-Resistant Details
572(1)
30.3.3 Weld Improvement
572(1)
30.3.4 Modification of Residual Stress Distribution
573(1)
30.3.5 Discussion
574(1)
30.4 Damage Tolerance Criteria
575(2)
30.4.1 General
575(1)
30.4.2 Residual Strength Assessment Using Failure Assessment Diagram
575(1)
30.4.3 Residual Life Prediction Using Paris Law
576(1)
30.4.4 Discussions
576(1)
30.5 Nondestructive Inspection
577(1)
References
578(1)
Part 4: Structural Reliability 579(128)
Chapter 31 Basics of Structural Reliability
581(22)
31.1 Introduction
581(1)
31.2 Uncertainty and Uncertainty Modeling
581(2)
31.2.1 General
581(1)
31.2.2 Natural versus Modeling Uncertainties
582(1)
31.3 Basic Concepts
583(7)
31.3.1 General
583(1)
31.3.2 Limit State and Failure Mode
583(1)
31.3.3 Calculation of Structural Reliability
583(5)
31.3.4 Calculation by FORM
588(1)
31.3.5 Calculation by SORM
589(1)
31.4 Component Reliability
590(1)
31.5 System Reliability Analysis
590(1)
31.5.1 General
590(1)
31.5.2 Series System Reliability
590(1)
31.5.3 Parallel System Reliability
591(1)
31.6 Combination of Statistical Loads
591(3)
31.6.1 General
591(1)
31.6.2 Turkstra's Rule
592(1)
31.6.3 Ferry Borges—Castanheta Model
593(1)
31.7 Time-Variant Reliability
594(1)
31.8 Reliability Updating
595(1)
31.9 Target Probability
596(1)
31.9.1 General
596(1)
31.9.2 Target Probability
596(1)
31.9.3 Recommended Target Safety Indices for Ship Structures
597(1)
31.10 Software for Reliability Calculations
597(1)
31.11 Numerical Examples
598(4)
31.11.1 Example 31.1: Safety Index Calculation of a Ship Hull
598(1)
31.11.2 Example 31.2: β Safety Index Method
599(1)
31.11.3 Example 31.3: Reliability Calculation of Series System
600(1)
31.11.4 Example 31.4: Reliability Calculation of Parallel System
601(1)
References
602(1)
Chapter 32 Structural Reliability Analysis Using Uncertainty Theory
603(12)
32.1 Introduction
603(1)
32.2 Preliminaries
604(3)
32.2.1 Uncertainty Theory
604(2)
32.2.2 Uncertain Reliability
606(1)
32.3 Structural Reliability
607(2)
32.4 Numerical Examples
609(4)
32.5 Conclusions
613(1)
References
613(2)
Chapter 33 Random Variables and Uncertainty Analysis
615(12)
33.1 Introduction
615(1)
33.2 Random Variables
615(4)
33.2.1 General
615(1)
33.2.2 Statistical Descriptions
616(1)
33.2.3 Probabilistic Distributions
617(2)
33.3 Uncertainty Analysis
619(1)
33.3.1 Uncertainty Classification
619(1)
33.3.2 Uncertainty Modeling
620(1)
33.4 Selection of Distribution Functions
620(1)
33.5 Uncertainty in Ship Structural Design
621(3)
33.5.1 General
621(1)
33.5.2 Uncertainties in Loads Acting on Ships
622(1)
33.5.3 Uncertainties in Ship Structural Capacity
623(1)
References
624(3)
Chapter 34 Reliability of Ship Structures
627(18)
34.1 General
627(1)
34.2 Closed Form Method for Hull Girder Reliability
628(2)
34.3 Load Effects and Load Combination
630(2)
34.4 Procedure for Reliability Analysis of Ship Structures
632(3)
34.4.1 General
632(1)
34.4.2 Response Surface Method
633(2)
34.5 Time-Variant Reliability Assessment of FPSO Hull Girders
635(8)
34.5.1 Load Combination Factors
635(2)
34.5.2 Time-Variant Reliability Assessment
637(5)
34.5.3 Conclusions
642(1)
References
643(2)
Chapter 35 Reliability-Based Design and Code Calibration
645(26)
35.1 General
645(1)
35.2 General Design Principles
645(4)
35.2.1 Concept of Safety Factors
645(1)
35.2.2 Allowable Stress Design
646(1)
35.2.3 Load and Resistance Factored Design
646(1)
35.2.4 Plastic Design
647(1)
35.2.5 Limit-State Design
648(1)
35.2.6 Life Cycle Cost Design
648(1)
35.3 Reliability-Based Design
649(2)
35.3.1 General
649(1)
35.3.2 Application of Reliability Methods to the ASD Format
650(1)
35.4 Reliability-Based Code Calibrations
651(3)
35.4.1 General
651(1)
35.4.2 Code Calibration Principles
651(1)
35.4.3 Code Calibration Procedure
652(1)
35.4.4 Simple Example of Code Calibration
653(1)
35.5 Numerical Example for Tubular Structure
654(6)
35.5.1 Case Description
654(1)
35.5.2 Design Equations
655(1)
35.5.3 Limit-State Function
656(1)
35.5.4 Uncertainty Modeling
657(1)
35.5.5 Target Safety Levels
658(1)
35.5.6 Calibration of Safety Factors
659(1)
35.6 Numerical Example for Hull Girder Collapse of FPSOs
660(4)
35.7 LRFD Example for Plates of Semisubmersible Platforms
664(6)
35.7.1 Case Description
664(1)
35.7.2 Design Steps
665(3)
35.7.3 Statistical Results
668(2)
References
670(1)
Chapter 36 Fatigue Reliability
671(18)
36.1 Introduction?
671(1)
36.2 Uncertainty in Fatigue Stress Model
672(1)
36.2.1 Stress Modeling
672(1)
36.2.2 Stress Modeling Error
672(1)
36.3 Fatigue Reliability Models
673(5)
36.3.1 Introduction
673(1)
36.3.2 Fatigue Reliability—S—N Approach
674(1)
36.3.3 Fatigue Reliability—FM Approach
674(3)
36.3.4 Simplified Fatigue Reliability Model—Lognormal Format
677(1)
36.4 Calibration of FM Model by S—N Approach
678(1)
36.5 Fatigue Reliability Application—Fatigue Safety Check
679(2)
36.5.1 Target Safety Index for Fatigue
679(1)
36.5.2 Partial Safety Factors
680(1)
36.6 Numerical Examples
681(6)
36.6.1 Example 36.1: Fatigue Reliability Based on Simple S—N Approach
681(1)
36.6.2 Example 36.2: Fatigue Reliability of Large Aluminum Catamaran
682(5)
References
687(2)
Chapter 37 Probability- and Risk-Based Inspection Planning
689(18)
37.1 Introduction
689(1)
37.2 Concepts for Risk-Based Inspection Planning
689(2)
37.3 Reliability-Updating Theory for Probability-Based Inspection Planning
691(3)
37.3.1 General
691(1)
37.3.2 Inspection Planning for Fatigue Damage
692(2)
37.4 Risk-Based Inspection Examples
694(1)
37.5 Risk-Based "Optimum" Inspection
695(9)
37.5.1 Inspection Performance
698(1)
37.5.2 Inspection Strategies
699(5)
References
704(3)
Part 5: Risk Assessment 707(120)
Chapter 38 Risk Assessment Methodology
709(16)
38.1 Introduction
709(6)
38.1.1 Health, Safety and Environment Protection
709(1)
38.1.2 Overview of Risk Assessment
709(1)
38.1.3 Planning of Risk Analysis
710(1)
38.1.4 System Description
711(1)
38.1.5 Hazard Identification
711(1)
38.1.6 Analysis of Causes and Frequency of Initiating Events
712(1)
38.1.7 Consequence and Escalation Analysis
712(1)
38.1.8 Risk Estimation
713(1)
38.1.9 Risk Reducing Measures
714(1)
38.1.10 Emergency Preparedness
714(1)
38.1.11 Time-Variant Risk
714(1)
38.2 Risk Estimation
715(2)
38.2.1 Risk to Personnel
715(1)
38.2.2 Risk to Environment
716(1)
38.2.3 Risk to Assets (Material Damage and Production Loss/Delay)
717(1)
38.3 Risk Acceptance Criteria
717(4)
38.3.1 General
717(1)
38.3.2 Risk Matrices
718(1)
38.3.3 The ALARP Principle
719(1)
38.3.4 Comparison Criteria
720(1)
38.4 Using Risk Assessment to Determine Performance Standard
721(1)
38.4.1 General
721(1)
38.4.2 Risk-Based Fatigue Criteria for Critical Weld Details
721(1)
38.4.3 Risk-Based Compliance Process for Engineering Systems
722(1)
References
722(3)
Chapter 39 Risk-Based Decision-Making
725(10)
39.1 Basic Probability Concepts
726(2)
39.2 The RBDM Process
728(2)
39.2.1 Risk Assessment
729(1)
39.2.2 Risk Management
729(1)
39.2.3 Impact Assessment
729(1)
39.2.4 Risk Communication
730(1)
39.3 A Step-by-step Example of the RBDM Process in the Field
730(4)
References
734(1)
Chapter 40 Risk Assessment Applied to Offshore Structures
735(30)
40.1 Introduction
735(1)
40.2 Collision Risk
736(4)
40.2.1 Colliding Vessel Categories
736(1)
40.2.2 Collision Frequency
736(3)
40.2.3 Collision Consequence
739(1)
40.2.4 Collision Risk Reduction
739(1)
40.3 Explosion Risk
740(5)
40.3.1 Explosion Frequency
740(2)
40.3.2 Explosion Load Assessment
742(1)
40.3.3 Explosion Consequence
742(1)
40.3.4 Explosion Risk Reduction
743(2)
40.4 Fire Risk
745(4)
40.4.1 Fire Frequency
745(1)
40.4.2 Fire Load and Consequence Assessment
746(2)
40.4.3 Fire Risk Reduction
748(1)
40.4.4 Guidance on Fire and Explosion Design
748(1)
40.5 Dropped Objects
749(4)
40.5.1 Frequency of Dropped Object Impact
749(2)
40.5.2 Drop Object Impact Load Assessment
751(1)
40.5.3 Consequence of Dropped Object Impact
752(1)
40.6 Case Study—Risk Assessment of Floating Production Systems
753(8)
40.6.1 General
753(2)
40.6.2 Hazard Identification
755(1)
40.6.3 Risk Acceptance Criteria
756(1)
40.6.4 Risk Estimation and Reducing Measures
757(3)
40.6.5 Comparative Risk Analysis
760(1)
40.6.6 Risk-Based Inspection
760(1)
40.7 Environmental Impact Assessment
761(1)
References
762(3)
Chapter 41 Formal Safety Assessment Applied to Shipping Industry
765(16)
41.1 Introduction
765(1)
41.2 Overview of FSA
766(2)
41.3 Functional Components of the FSA
768(9)
41.3.1 System Definition
768(1)
41.3.2 Hazard Identification
769(5)
41.3.3 Frequency Analysis of Ship Accidents
774(1)
41.3.4 Consequence of Ship Accidents
775(1)
41.3.5 Risk Evaluation
776(1)
41.3.6 Risk Control and Cost—Benefit Analysis
777(1)
41.4 HOF in the FSA
777(1)
41.5 An Example Application to the Ship's Fuel System
778(1)
41.6 Concerns Regarding the Use of FSA in Shipping
779(1)
References
780(1)
Chapter 42 Economic Risk Assessment for Field Development
781(12)
42.1 Introduction
781(3)
42.1.1 Field Development Phases
781(1)
42.1.2 Background of Economic Evaluation
782(1)
42.1.3 Quantitative Economic Risk Assessment
783(1)
42.2 Decision Criteria and Limit-State Functions
784(1)
42.2.1 Decision and Decision Criteria
784(1)
42.2.2 Limit-State Functions
784(1)
42.3 Economic Risk Modeling
785(3)
42.3.1 Cost Variable Modeling
785(1)
42.3.2 Income Variable Modeling
786(1)
42.3.3 Failure Probability Calculation
787(1)
42.4 Results Evaluation
788(2)
42.4.1 Importance and Omission Factors
788(1)
42.4.2 Sensitivity Factors
789(1)
42.4.3 Contingency Factors
789(1)
References
790(1)
Appendix A: Net Present Value and Internal Rate of Return
790(3)
Net Present Value
791(1)
Internal Rate of Return
791(2)
Chapter 43 Human Reliability Assessment
793(10)
43.1 Introduction
793(1)
43.2 Human Error Identification
794(2)
43.2.1 Problem Definition
794(1)
43.2.2 Task Analysis
795(1)
43.2.3 Human Error Identification
795(1)
43.2.4 Representation
796(1)
43.3 Human Error Analysis
796(1)
43.3.1 Human Error Quantification
796(1)
43.3.2 Impact Assessment
797(1)
43.4 Human Error Reduction
797(1)
43.4.1 Error Reduction
797(1)
43.4.2 Documentation and Quality Assurance
798(1)
43.5 Ergonomics Applied to Design of Marine Systems
798(1)
43.6 QA and Quality Control
799(1)
43.7 Human and Organizational Factors in Offshore Structures
800(2)
43.7.1 General
800(1)
43.7.2 Reducing Human and Organizational Errors in Design
801(1)
References
802(1)
Chapter 44 Risk-Centered Maintenance
803(24)
44.1 Introduction
803(3)
44.1.1 General
803(1)
44.1.2 Application
804(1)
44.1.3 RCM History
804(2)
44.2 Preliminary Risk Analysis
806(2)
44.2.1 Purpose
806(1)
42.2.2 PRA Procedure
806(2)
44.3 RCM Process
808(10)
44.3.1 Introduction
808(1)
44.3.2 RCM Analysis Procedures
809(7)
44.3.3 Risk-Centered Maintenance (Risk-CM)
816(1)
44.3.4 RCM Process—Continuous Improvement of Maintenance Strategy
817(1)
44.4 RCM Application to a Shell and Tube Heat Exchanger on Floating Production, Storage, and Offloading
818(6)
44.4.1 Introduction of Shell and Tube Heat Exchangers
818(1)
44.4.2 RCM Process
819(5)
References
824(3)
Part 6: Fixed Platforms and FPSO 827(130)
Chapter 45 Structural Reassessment of Offshore Structures
829(22)
45.1 Introduction
829(1)
45.2 Corrosion Model and Crack Defects Analysis
829(4)
45.2.1 Corrosion Model
829(1)
45.2.2 Crack Defects Analysis
830(3)
45.3 The Residual Ultimate Strength of Hull Structural Components
833(9)
45.3.1 Effects of Crack Defects on Plates and Stiffened Panels
833(4)
45.3.2 Effects of Localized Corrosion on Plates and Stiffened Panels
837(5)
45.4 The Residual Ultimate Strength of Hull Structures with Crack and Corrosion Damage
842(8)
45.4.1 Analysis Method of Ultimate Strength
843(1)
45.4.2 Modeling
844(1)
45.4.3 Residual Ultimate Strength with Crack Damage
844(4)
46.4.4 Residual Ultimate Strength with Corrosion Damage
848(2)
References
850(1)
Chapter 46 Time-Dependent Reliability Assessment of Offshore Jacket Platforms
851(24)
46.1 Introduction
851(1)
46.2 The Time-Dependent Reliability Model for the Jacket Platform
852(4)
46.3 Probability Model for Resistance of the Jacket Platform
856(6)
46.3.1 Base Shear Capacity
856(1)
46.3.2 Probability Model of the Initial Base Shear Capacity
857(1)
46.3.3 Degradation of the Base Shear Capacity under Corrosion Effect
858(4)
46.4 Probability Model for Load Effect of the Jacket Platform
862(2)
46.4.1 Parameter Probability Models of Typhoon Load
862(1)
46.4.2 Load Effect of the Jacket Platform under Typhoon Load
863(1)
46.4.3 The Probability Model of the Load Effect
864(1)
46.5 Time-Dependent Reliability Assessment
864(7)
46.5.1 The Example Platform
864(1)
46.5.2 Probability Model for Resistance of the Jacket Platform
865(2)
46.5.3 Probability Model for Load Effect of the Jacket Platform
867(3)
46.5.4 Time-Dependent Reliability Assessment Results of the Platform
870(1)
46.6 Conclusion
871(1)
References
872(3)
Chapter 47 Reassessment of Jacket Structure
875(16)
47.1 General
875(1)
47.2 Modeling
876(4)
47.2.1 Structural Model
876(1)
47.2.2 Metocean Data
876(1)
47.2.3 Foundation Model
877(1)
47.2.4 Corrosion Rate Model
878(2)
47.3 Pushover Analysis
880(3)
47.3.1 Ultimate Strength Analysis
881(1)
47.3.2 Reserve Strength Ratio
882(1)
47.3.3 Incremental Wave Theory
882(1)
47.4 Corrosion Effect on the Jacket Structure
883(2)
47.5 Comparing Corrosion Effect
885(3)
47.6 Conclusion
888(1)
References
889(2)
Chapter 48 Risk and Reliability Applications to FPSO
891(16)
48.1 General
891(1)
48.2 Risk-Based Classification
892(1)
48.2.1 Applicability of Risk-Based Classification
892(1)
48.2.2 Owner/Operator's Responsibilities
892(1)
48.2.3 Classifications' Responsibilities
893(1)
48.2.4 Submittals and Requirements for Design Verification
893(1)
48.3 Risk-Based Inspection
893(8)
48.3.1 Strengths and Weaknesses of Risk-Based Inspection (Advantages of Risk-Based Inspection)
894(1)
48.3.2 Elements and Procedures of Risk-Based Inspection
895(1)
48.3.3 Methodology of Risk-Based Inspection
896(5)
48.4 Risk-Based Survey
901(5)
48.4.1 Current Practice of Surveys
901(1)
48.4.2 The Main Drawbacks of the Current Survey Practice
902(1)
48.4.3 Risk-Based Survey for Maintenance of Class
903(3)
Further Reading A
906(1)
Chapter 49 Explosion and Fire Response Analysis for FPSO
907(32)
49.1 Introduction
907(1)
49.2 Accident Causation Analysis
908(2)
49.2.1 Formal Safety Assessment
910(1)
49.3 Phase I: Identification of Dangerous Sources
910(4)
49.3.1 The Structure Function of Fault Tree
911(3)
49.4 Phase II: Risk Assessment and Management
914(5)
49.4.1 Procedure for Fire Risk Assessment and Management
915(1)
49.4.2 Procedure for Explosion Risk Assessment and Management
916(3)
49.5 Phase III: Risk Restraining Project
919(2)
49.6 Examples of Explosion Response of FPSO
921(10)
49.6.1 Introduction
921(1)
49.6.2 Gas Dispersion CFD Simulations
921(3)
49.6.3 Gas Explosion CFD Simulation
924(2)
49.6.4 Nonlinear Structural Response Analysis
926(5)
49.7 Example of Fire Response of FPSO
931(6)
49.7.1 Fire CFD Simulation
931(4)
49.7.2 ANASYS Analysis
935(2)
References
937(2)
Chapter 50 Asset Integrity Management (AIM) for FPSO
939(18)
50.1 Introduction
939(1)
50.2 Basic Theory for RBM
939(2)
50.3 Risk-Based Inspection
941(5)
50.3.1 Introduction
941(1)
50.3.2 The Main Research Contents
942(1)
50.3.3 Modeling the Risk
942(2)
50.3.4 RBI Process
944(2)
50.4 Safety Integrity Level Assessment
946(2)
50.4.1 Introduction
946(1)
50.4.2 The Main Research Contents
947(1)
50.4.3 Research Method
947(1)
50.5 Reliability-Centered Maintenance
948(3)
50.5.1 Introduction
948(2)
50.5.2 The Main Research Contents
950(1)
50.5.3 Research Method
950(1)
50.6 Engineering Projects
951(4)
50.6.1 Introduction
951(1)
50.6.2 Screening Analysis
951(2)
50.6.3 Detailed Assessment
953(1)
50.6.4 Risk Mitigation Plan
954(1)
50.6.5 Summary
954(1)
Further Reading
955(2)
Index 957
Dr. Yong Bai holds the position of Chair Professor at Zhejiang University (China) and is also an academician at the Norwegian Academy of Technical Sciences. He is a fellow of the US Society of Naval Architects and Marine Engineers and the UK Royal Institution of Naval Architects. With an extensive background in offshore engineering structures and pipelines, Prof. Bai has held professorships at renowned universities, significantly contributing to the global offshore oil and gas industry through his publications and innovative achievements. Fellow of the Institute of Civil Engineers (ICE) and an honorary professor in Queen's University, UK. His research interest includes structural reliability, durability of reinforced concrete structure, health monitoring of concrete structures, and fundamental theories of concrete structures and their applications. He founded the group on Durability of Concrete Structures in 1995 at Zhejiang University, which carries out research on the durability problems regarding environments, materials, concrete components and structures. He has been awarded 20 research grants by the Chinese government and has published more than 200 articles, co-authored 9 monographs. He also won 3 National Awards for Science and Technology Progress and 5 Science & Technology Awards of Zhejiang Province. Prof. Jin previously held research fellowships from the Alexander von Humboldt Foundation and the Norwegian Council of Research.