Atjaunināt sīkdatņu piekrišanu

E-grāmata: Mass Dimension One Fermions

  • Formāts - EPUB+DRM
  • Cena: 153,46 €*
  • * ši ir gala cena, t.i., netiek piemērotas nekādas papildus atlaides
  • Ielikt grozā
  • Pievienot vēlmju sarakstam
  • Šī e-grāmata paredzēta tikai personīgai lietošanai. E-grāmatas nav iespējams atgriezt un nauda par iegādātajām e-grāmatām netiek atmaksāta.

DRM restrictions

  • Kopēšana (kopēt/ievietot):

    nav atļauts

  • Drukāšana:

    nav atļauts

  • Lietošana:

    Digitālo tiesību pārvaldība (Digital Rights Management (DRM))
    Izdevējs ir piegādājis šo grāmatu šifrētā veidā, kas nozīmē, ka jums ir jāinstalē bezmaksas programmatūra, lai to atbloķētu un lasītu. Lai lasītu šo e-grāmatu, jums ir jāizveido Adobe ID. Vairāk informācijas šeit. E-grāmatu var lasīt un lejupielādēt līdz 6 ierīcēm (vienam lietotājam ar vienu un to pašu Adobe ID).

    Nepieciešamā programmatūra
    Lai lasītu šo e-grāmatu mobilajā ierīcē (tālrunī vai planšetdatorā), jums būs jāinstalē šī bezmaksas lietotne: PocketBook Reader (iOS / Android)

    Lai lejupielādētu un lasītu šo e-grāmatu datorā vai Mac datorā, jums ir nepieciešamid Adobe Digital Editions (šī ir bezmaksas lietotne, kas īpaši izstrādāta e-grāmatām. Tā nav tas pats, kas Adobe Reader, kas, iespējams, jau ir jūsu datorā.)

    Jūs nevarat lasīt šo e-grāmatu, izmantojot Amazon Kindle.

This overview of mass dimension one fermions and the eigenspinors of the charge conjugation operator is written by one of the theoretical physicists involved in their discovery. With mass dimension one fermions being candidates for dark matter, this is an important book for students and researchers in quantum field theory.

In 2005, Dharam Ahluwalia and Daniel Grumiller reported an unexpected theoretical discovery of mass dimension one fermions. These are an entirely new class of spin one half particles, and because of their mass dimensionality mismatch with the standard model fermions they are a first-principle dark matter candidate. Written by one of the physicists involved in the discovery, this is the first book to outline the discovery of mass dimension one fermions. Using a foundation of Lorentz algebra it provides a detailed construction of the eigenspinors of the charge conjugation operator (Elko) and their properties. The theory of dual spaces is then covered, before mass dimension one fermions are discussed in detail. With mass dimension one fermions having applications to cosmology and high energy physics, this book is essential for graduate students and researchers in quantum field theory, mathematical physics, and particle theory.

Recenzijas

'This monograph presents several important concepts of quantum eld theory in a dierent perspective and explores the consequences. If nothing else, it denitely contributes to reinforcing our understanding of current quantum eld theory by separating out necessities from conventions in the formulation grounds of the theory. I am deeply convinced, however, that the additional elements presented in the book may serve a bigger purpose: the understanding of dark matter physics.' Julio Marny Ho da Silva, Mathematical Reviews Clippings

Papildus informācija

Provides an overview of the eigenspinors of the charge conjugation operator and mass one dimension fermions.
Preface xiii
Acknowledgements xix
1 Introduction
1(5)
2 A Trinity of Duplexities
6(4)
2.1 From Emergence of Spin, to Antiparticles, to Dark Matter
6(4)
3 From Elements of Lie Symmetries to Lorentz Algebra
10(10)
3.1 Introduction
10(2)
3.2 Generator of a Lie Symmetry
12(1)
3.3 A Beauty of Abstraction and a Hint for the Quantum Nature of Reality
13(2)
3.4 A Unification of the Microscopic and the Macroscopic
15(1)
3.5 Lorentz Algebra
16(2)
3.6 Further Abstraction: Un-Hinging the Lorentz Algebra from its Association with Minkowski Spacetime
18(2)
4 Representations of Lorentz Algebra
20(11)
4.1 Poincare Algebra, Mass and Spin
20(2)
4.2 Representations of Lorentz Algebra
22(2)
4.3 Simplest Representations of Lorentz Algebra
24(3)
4.4 Spacetime: Its Construction from the Simplest Representations of Lorentz Algebra
27(2)
4.5 A Few Philosophic Remarks
29(2)
5 Discrete Symmetries: Part 1 (Parity)
31(10)
5.1 Discrete Symmetries
31(1)
5.2 Weyl Spinors
32(1)
5.3 Parity Operator for the General Four-Component Spinors
33(4)
5.4 The Parity Constraint on Spinors, Locality Phases, and Constructing the Dirac Spinors
37(4)
6 Discrete Symmetries: Part 2 (Charge Conjugation)
41(5)
6.1 Magic of Wigner Time Reversal Operator
41(1)
6.2 Charge Conjugation Operator for the General Four-Component Spinors
42(1)
6.3 Transmutation of V Eigenvalues by C, and Related Results
43(3)
7 Eigenspinors of Charge Conjugation Operator, Elko
46(3)
7.1 Elko
46(2)
7.2 Restriction on Local Gauge Symmetries
48(1)
8 Construction of Elko
49(4)
8.1 Elko at Rest
49(1)
8.2 Elko Are Not Grassmann, Nor Are They Weyl In Disguise
50(1)
8.3 Elko For Any Momentum
51(2)
9 A Hint for Mass Dimension One Fermions
53(3)
10 CPT for Elko
56(2)
11 Elko in Shirokov-Trautman, Wigner and Lounesto Classifications
58(1)
12 Rotation-Induced Effects on Elko
59(5)
12.1 Setting Up an Orthonormal Cartesian Coordinate System with p as One of Its Axis
59(2)
12.2 Generators of the Rotation in the New Coordinate System
61(1)
12.3 The New Effect
62(2)
13 Elko-Dirac Interplay: A Temptation and a Departure
64(7)
13.1 Null Norm of Massive Elko and Elko-Dirac Interplay
64(2)
13.2 Further on Elko-Dirac Interplay
66(1)
13.3 A Temptation and a Departure
67(4)
14 An Ab Initio Journey into Duals
71(13)
14.1 Motivation and a Brief Outline
71(1)
14.2 The Dual of Spinors: Constraints from the Scalar Invariants
72(1)
14.3 The Dirac and the Elko Dual: A Preview
72(1)
14.4 Constraints on the Metric from Lorentz, and Discrete, Symmetries
73(4)
14.5 The Elko Dual
77(2)
14.6 The Dual of Spinors: Constraint from the Invariance of the Elko Spin Sums
79(1)
14.7 The IUCAA Breakthrough
80(4)
15 Mass Dimension One Fermions
84(10)
15.1 A Quantum Field with Elko as its Expansion Coefficient
84(1)
15.2 A Hint That the New Field Is Fermionic
85(2)
15.3 Amplitude for Propagation
87(2)
15.4 Mass Dimension One Fermions
89(2)
15.5 Locality Structure of the New Field
91(3)
16 Mass Dimension One Fermions as a First Principle Dark Matter
94(4)
16.1 Mass Dimension One Fermions as Dark Matter
94(1)
16.2 A Conjecture On a Mass Dimension Transmuting Symmetry
95(1)
16.3 Elko Inflation and Elko Dark Energy
96(1)
16.4 Darkness Is Relative, Not Self-Referential
97(1)
17 Continuing the Story
98(4)
17.1 Constructing the Spacetime Metric from Lorentz Algebra
98(2)
17.2 The [ R × L]s=1/2 Representation Space
100(1)
17.3 Maxwell Equations and Beyond
101(1)
Appendix: Further Reading 102(2)
References 104(9)
Index 113
Dharam Ahluwalia is a theoretical physicist known internationally for his research on neutrino oscillations, interface of the gravitational and quantum realms, and new constructs in quantum field theory. In the early 1990s he introduced what later came to be known as Elko, and in 2005, together with Daniel Grumiller, reported on an unexpected theoretical discovery of mass dimension one fermions. This work has opened the field of Elko cosmology and has attracted the attention of physicists working on the localisation problem in five dimensional branes. In 1996, he was awarded the First Prize of the Gravity Research Foundation, jointly with Christoph Burgard.